AD=A0B2 359 WEIZMANN INST OF SCIENCE REHOVOTH (ISRAEL) DEPT OF -=ETC F/6 9/2
SYNTHESIZED STRUCTURED PROGRAMMING.(U)
JAN B0 Z MANNA AFOSR=78-3483
UNCLASSIFIED RADC =TR~79=326

s £
= & Mo
_ E Ig |II|§
n Tl

: = |
lL2s s e

= = =

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

UNCLASSIFIED
SECUMPWCLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF O OO BTN oM

/ |1. GOVTY ACCESNO?. . RECIPIENT'S CATALOG NUMBER

4. T\YLE (and Subtitia)

“| SYNTHESIZED STRUCTURED PROGRAMMING , ‘)
e = -
. N/A
7. AYT y N «_‘!.‘_.f TRACY OR GRANT NUMBER(e)
) O] Zobar pranna (_[?' | f&rosr-78-3483
S
’ . PERFORMING ORGANIZATION NAME AND ADORE 10. ::gﬁl‘lzotkK(ntﬂf. PMJ(CT, TASK
%, Weizmann Institute of Science 62702F
5 Applied Mathematics Department /ﬁ; @535 4
. Rehovot, Israel \ v/
. t1. CONTROLLING OFFICE NAME AND ADDRESS . !
Air Force Office of Scientific Research (NM) i
Bldg 410 Bolling AFB -~} i
Wash DC 20332 188 -
‘ . MONITORING AGENCY NAME & ADDRESS(I! diff from C iing Office) 15. SECURITY CLASS. (of t .
Rome Air Development Center (ISIS) UNCLASSIFIED {
¢ - Griffiss AFB NY 13441
. ’ ‘hm
IN/A SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

RS

17. DISTRIBUTION STATEMENT (of the lbnna.ﬂ ontered in Block 20, if difterent from Report)

S Same

16. SUPPLEMENTARY NOTES
RADC Project Engineer: Northrup Fowler, III (ISIS)

: k Prepared in cooperation with N. Dershowitz
4
. 19. KEY WOROS (Continue on reverase side if neceasary and identily by block number)
v program modification program annotation
:‘ 2 program debugging
' ¥ program instantiation
program abstraction
program synthesis
. —_— 20. TRACT (Continue on reverss side If necessesry and identify by block number)
- Techniques of program modification are formulated, and an experimental lOftJ
H ¥ ware system implemented, whereby a given program that achieves one goal can be
. l. i transformed into a new program to achieve a different goal. The essence of the
approach {s to find an analogy between the specifications of the given program
:) and of the desired program, and then to transform the given program nccordingl;k
! N o
L ‘m)Program debugging is considered as a special case of modification: if a prog
: gram computes wrong result»l it must be modified to achieve the intended rmltl‘
. 0D (3N 73 UNCLASSIFIED v
1 N SECURITY CLASSIFICATION OF THIS PAGE (When Dare Bntersd) p,?‘
P]) /
} /v/,'/' - 7() ; \J(’4‘ ’
>
] ’ . S - - . . . - _ .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. Item 20 (Cont'd)

e,

——1415The abstraction of a set of concrete programs to obtain a program schema and
T the instantiation of abstract schemata to solve concrete problems are also
viewed from the perspective of modification techniques.

— i

N Two tools are developed as aids in the above tasks: We describe trans-
formation rules for synthesizing code from specifications in a top~-down
manner. They may be used when - in the course of modifying a program - the
need arises to completely rewrite a program segment. For the purpose of
determining what an incorrect program actually does - before attempting to de-
bug it - we develop techniques of program annotation. These techniques are
expressed as inference rules and derive invariant assertions from the program
text.

'&mtes were prepared jointly by N. Dershowitz and Z. Manna. They are
based on the papers by Dershowitz and Manna (1977, 1978) and Dershowitz's PH.D.
Thesis (1978).

UNCLASSIFIED

q N SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

EVALUATION

This research effort forms part of a broad integrated project under
RADC TPO No. 5 (C> System Availability), Thrust A (Software Cost

el h oy

Reduction), to attack the problem of spiraling Air Force software life-
cycle costs. Complemented within the RADC project both technologically

and temporally, this medium long range, high payoff effort focuses on
automated software synthesis and modification. It develops theoretical

techniques utilizing program annotation, abstraction, instantiation and
transformation. These techniques, and the emerging theory that unifies
them, form the basic substructure of future undertakings that will
ewentually result in automated production line aids for efficient soft-
ware production and maintenance.

Moo Tousles m.

NORTHRUP FOWLER III
Project Engineer

‘Accession For

NTIS GRA&I ‘
DDC TaAB
Unannounced

at———

i
¢
t
§
5
£
!

sy

o

Justirication

By

.Distribution/

Availabilit Y _Codes
Availand/or
Dist 8special

Rl TR RS - 3 e R ok

Y e

-— o~

INTRODUCTION

o’ L

. . . A R ek A A AT Wy S s A e A en S TR M e - e aae
. A

&b N bt e 2 AR - o o ")
< -

.S, w - et e

o ® 2 v

Programming begins with the specification of what the desired program should do; the
programmer's job is to develop an executable program satistying those specifications. The
goal of automatic-programming research is to formalize the methods and strategies used
by programmers so that they may be incorporated In an automatic, or interactive,
programming environment,

While most automatic-programming research has focused on the creation of programs
ex nihilo, very little of this work concentrates on applying past experience to new
problems. Typically, a programmer directs more of his effort at the modification of
programs that have aiready been written than at the development of original programs.
The evolutionary cycle of a program includes debugging, changes to meet amended
specifications, and extensions for expanded capabliities. Even when nominally engaged in
the construction of a new program, the programmer is constantly recycling "used"
programs and adapting basic principles that have aiready been incorporated into other
programs. ideas of general applicability are abstracted into subroutines or programming
techniques and then applied to specific problems at hand.

In this research, we have attempted to emulate the evolutionary aspects of
programming in the context of an automatic program-development system. We have
formulated techniques of program modification, whereby a given program that achieves one
goal can be transformed into a new program to achleve a different goal. The essence of
the approach is to find an analogy between two sets of specifications, those of a program
that has already been constructed and those of the program that we desire to construct.
This analogy Is then used as the basis for transforming the existing program to meet the
new specifications. Program debugging Is considered as a special case of modification: if a
program computes wrong results, it must be modified to achieve the intended resuits.

Program modification is not the only manner in which a programmer utilizes previously
acquired kmowledge. The human programmer improves with experience by assimilating
various programming methods that he encounters, and judiciously applying the learned
ideas to new problems. After coming up with several modifications of his first "wheel”, he
is likely to formulate for himself (and perhaps for others) an abstract notion of the
underlying principle and reuse it in new, but related, applications. Program schemata are a
convenient form for remembering such programming knowledge. A schema may embody
basic programming techniques and strategies (e.g. the generate-and-test paradigm or the
binary-search technique) and contains abstract predicate, function, and constant syinbo!a.
in terms of which its specification is stated.

INTRODUCTION

The abstraction of a set of concrete programs to obtain a program schema and the
instantiation of abstract schemata to solve concrete problems may be viewed from the
perspective of modification techniques. This perspective provides a methodology for
applying old knowledge to new problems. Beginning with a set of programs sharing some
basic strategy and their correctness proofs, & program schema that represents the
embedded technique is sought. Preconditions for the schema's applicabllity are ailso
derived from the correctness proofs. The schema's abstract specification may then be
compared with a given concrete specification and an instantiation found that, when applied
to the schema, yields a concrete program. If the Instantiation satisfies the preconditions,
then the correctness of the new program is guaranteed.

Extending a program to satisfy additional specifications is another form of program
modification. Techniques are required to construct code that extends the incomplete
program to achlieve the remaining specifications, while ensuring that the originatl
specifications continue to be satisfied. Modification based on analogy and extension can
be combined to solve a given problem. The analogy between a new problem and a given
program may only indicate how to achieve part of the specified goal; the transformed
program is then extended to achiave the remainder.

Sometimes, in the course of modifying a program or instantiating a schema, it may turn
out that a program segment, e.g. a loop initialization, must be constructed from scratch.
Top-down synthesis techniques are useful for this purpose. Beginning with the specifications
of the desired segment, the goal Iis to develop the program step by step until executable
code is obtained. Each step consists of rewriting a segment of the program in increased
detall. Since every step is transparent enough to ensure correctness, each partial
program in the series is equivalent to its predecessor. In particular, the final program is
guaranteed to satisfy the initial specifications.

A prerequisite for debugging an incorrect program is knowledge about what the
program actually does, as opposed to what it was intended to do. Moreover, various facts
about a program are frequently needed for the purposes of modification, though they were
not supplied by the programmer. For these purposes, we devote attention to the
development of annotation techniques for documenting a program with assertions. Assertions
are a useful means of documenting facts about the internal workings of a program; they
relate to specific points in the program and assert that some relation hoids for the current
values of the program variables whenever control passes through that point. Given a
program along with its Input-output specification, the task is to annotate the program
iIncrementally with assertions that explain the actual workings of the inogun regardiess of

b .o
e A B e e B A B 0, il ol

whether the program Is correct. These annotations can be used as aids in the debugging
of an incorrect program. They can also bp used for verifying the correctness of programs
or for analyzing program efficlency. Our annotation techniques are formulated as inference
rules.

The techniques of program manipulation that we have investigated are for the most
part amenable to automation, and we have implemented them in an experimental system,
written in QLISP. Our implementation consists of three parts: modifier, annotator, and
synthesizer. The implementation was meant to serve as a proving ground for ideas; many of
the examples presented In this report have run successfully. The modifier has, for
example, modified an integer square-root program to compute quotients and has debugged
an Incorrect real-division program. Our annotator can generate the necessary invariants
for these programs, and for more complex programs, e.g. selection sort. The synthesizer
has successfully constructed several complete programs, such as one for finding the
minimal element of an array, or for finding its value.

The next chapter presents a general overview of the various aspects of program
modification; their individual roles and their close interaction are lllustrated in an account
of the evolution of an example program. The remainder of this report is composed of
chapters on techniques for
® modification and debugging,
® abstraction and instantiation,
® synthesis, and
® annotation.

Each of these chapters is largely self-contained, though a common set of examples is
threaded through them. Bibliographic remarks are included in the individuat sections.

o

k-
or
CHAPTER 1
GENERAL OVERVIEW

I WIS SDPSS D 4'm - 'Y PR o Y e L R L T S) Caoa e [1 - 4
f -
.
. s -
. '. Ld . 2 - - - h .All
~

In this overview we shall trace the life-cycie of a single example program, in an
attempt to impart the overall flavor of our approach to program modification, and to
lilustrate how the various aspects are Interrelated. More formal treatments of our
techniques may be found in the individual chapters. This example is outiined in Figure 1; it b
owes its motivation to Wensiey [1969] and Dijkstra [1876].

bad real-division program

*
. debugging
‘ (using annotation)

good real-division program

£ . mo \lsatlon
real square-root program

abstrac]

R e T e

S

binary-search schema

lnstan’tiatlon
(using s{nthesls)

RO YIS RV . s

integer square-root program

T AR T .

Figure 1. Evolution of a division program

We begin with an imperfect program to compute the quotient of two real numbers. We

then debug the program, after determining enough about what the program actually does.

g Once the division program is corrected, it Is modified to compute the square-root of a real
number. Underlying both the division and square-root program is the binary-search

]
. technique; by abstracting these two programs, a binary-search schema is obtained. This
) schema Is then instantiated to obtain a third program, one to compute the square-root of an
integer. Part of that program is synthesized from scratch.
A »

GENERAL OVERVIEW 7

1. The Problem

Consider the problem of computing the quotient z of two nonnegative real numbers ¢
and d within a specified (positive) tolerance ¢. These specifications are conveniently
exprassed in a high-level assertion language in terms of an output specification and an input
spcctflcatign. The output specification states the desired relationship among the program
variables upon termination. in our case, the output specification

lc/d-zKe

indicates that the (absolute value of the) difference between the exact value of ¢/d and
the result z should be less than ¢. The input specification defines the set of inputs on
which the program is intended to operate. Assuming that we only wish to soive this
problem for the case where the numerator ¢ is smalier than the denominator d, the
appropriate input specification for the program is

0sc<d N >0 .

We can express our goal in the form of the following skeleton program:

P begin comment real-division program
assert 0<c<d, >0
achieve [/d-z<e¢ varying z
end .

e
e s o— . e——

The achieve statement,
achieve [/d-z|¢e varying z ,

specifies the relation between the variables 2, ¢, d, and ¢ that we wish to attain at
the end of program execution. The clause

varying z

indicates that only the variable z may ba set by the program; the variavles ¢, d, and ¢
contain input velues that may not be modified. The assert statement,

assert 0<cid, >0 ,
attached to the beginning of the program, specifies what relation between the input

variables may be assumed to always hold at the beginning of program execution.

An achieve statement may be considered as a "very high-level® programming
construct that "somehow" achieves the specified relation at that point in the program. It

is not directly executable; the task of the programmer — be he human or machine — is to

L i e

SEINN

e

systematically transform the achieve statement into an executable program by replacing
it with more concrete code. If the replacement itself contains achieve statements, then
the process iterates, step by step, untll a machine-executable program is obtained that
contains only primitive statements and operators. This final program will be of the form

r
| P,; begin comment real-division program

1]
I
assert 0<c<d, ¢>0 |
purpose |[/d-zKe |
code |
suggest |c/d-z|<e |
end . |
!

The purpose statement,
purpose |[c/d-z|<e ,

Is a comment describing what the intent of the code following it is. The statement
suggest |/d-z|<e

contains the programmer's contention that the preceding code actually achieves the
desired relation, i.e. the relation |c/d-z|¢e holds for the value of z when control reaches
the end of the program.

When an assertion, such as k/d-zi<e, has been proved to hold each time control
passes through some point, then it is said to be an invariant assertion at that point. As long
as it has not been proved to hold, it is called a candidate. In particular, an output candidate,
assoclated with the point of termination, is a local invariant at that point, if the final values
of the variables satisfy the asserted relation when the program terminates. The assertion
Is termed an output invariant once this has been proved to be the case. A prdgram. then,
may be considered correct if there exist output Invariants that Imply the output
specification.

For the problem at hand, we must assume that no general real-division operator / is
available, though division by an integer is permissible. Otherwise, the problem could be
solved with a trivial assignment statement

z = ¢cld .

The reader may also note that, were it not for the restriction that only the variable z may
be set by the program, the problem could be soived, for example, by setting both 2z and ¢
to 0. This would satisfy the specification [/d-z|<e , but is not the intended solution.

Now let us assume that a programmer went ahead and constructed the following
program:

GENERAL OVERVIEW o y

—
P: begin comment suggested division program

B: assert 0scdd, X0

purpose k/d-z<e
purpose 1sc/d, c/dCzey, yse
(z,9) = (0,1)
loop L: suggest sc/d, c/d<i+y

|
I
|
I
|
I
| until yse
|
|
|
I
I
I
[

P Sy g S g YRS PP TS W - - AT o

it de«(z+y)Sc then z = 2+4y fi
y = 3
Trepeat
suggest sc/d, c/d<z+y, 9ySe
E.: suggest [/d-z<e
end .

s —— — —— — — D — — —— —— ey — c——

The comment
purpose Sc/d, c/d<x+y, yse

indicates that the programmer’s intention is to achieve the desired relation [c/d-z|[<e by
achieving the three subgoals zsc/d, c/d<z+y, and y<e¢. Achieving these relations is
sufficient for k/d-zi<e to hold. To achieve them, the programmer constructed an iterative
loop Intended to keep the first two relations invariantly true while making progress towards
the third. The intended loop invariants are given in the statement

suggest z25c/d, c/d{z+y
at the label L, ; they are first initialized by the multiple assignment
(z,9) = (0,1) ,

since both 0<c/d and ¢/d<0+] are implied by the assumption that 0sc<d . The two
loop-body statements

if de«(z+9)Sc them z = 24y fi
] | y = 92

F ‘ are then repeated until the test

i, until y<¢

10

becomes true, at which point the loop is left.*

For the candidates
suggest z<c/d, c/d(z+y

to be loop invariants, they must hold when the loop is first entered and must remain true
each subsequent time control returns to the beginning of the loop. Though we have seen
that they do hoid initially, it has not yet been verified that they remain true.
Consequently, it Is also not known if the output candidate k/d-zl<e is invariant. In fact,
by running the program with ¢=1, d=3, and e=1/3, for instance, the programmer may
discover that the result z=0 does not satisfy [/d-zl<e. Since these values for the
variables satisfy the input specification, but do not satisfy the output specification, the
program Is incorrect. The bug presumably occurred when the programmer “inadvertently”
interchanged the two statements within the loop.

2. Annotation

We know what this program was intended to do. However, before we can debug it, we
must know more about what it actually does. This will be accomplished by examining the
code, trying to extract as many relations between the variables as we can, and annotating
the program with the discovered relations.

Our techniques for program annotation are discussed in more detail in the chapter on
annotation. There they are expressed as inference rules: the antecedents of each rule
are usually annotated program segments and the consequent is either an invariant or a
candidate. These rules have been implemented; the automatic annotation of a similar
program Is shown in the appendix on implementation.

As a first step, we note that the input variables ¢, d, and ¢ are not changed by the
program. Therefore the input assertion
assert 0sc<d, >0

holds throughout execution of the program. Such an assertion is termed a global invariant
of the program; we write

assert 0scdd, ¢>0 in P, .

*T he loop-until-repeat construct we use is based on the suggestion of J. Ole-Dahl in Knuth [1974];
achieve statements were used by Sussman [1975].

i~ PO 10

T I SO X o 5]

I TN

GENERAL OVERVIEW

We now try to determine the range of the two program variables y and z. The
assignments to » in the program P, are
y =1 y =2 .
The variable 3 Is Initialized to | before the loop and Is repeatedly divided by 2 within

the loop. It follows that y=1/2", where n is some nonnegative integer indicating the
number of times that y has been halved.

In dealing with sets, we find the following notation convenient: Let f(s..s,,$,)
be any expression containing occurrences of m distinct subexpressions 5,5,S, .
The set of elements
{ f(s.8,8,) s,€5 568, ...,5.€5, }
is denoted by
[G,.8,8) .

Using this notation, we say that 3 belongs to the set 172N , where N is the set of
nonnegative integers. Since this relatioi: holds throughout the program P from the point

when the assignment 9:=1 is first executed, we may assert the global invariant

assert yell?N in P, .

From this invariant one can derive both an upper and lower bound on y. At one

extreme yel/2°=l , and at the other extreme — as the exponent increases — the value n{
9 approaches 0. Thus, we

assert 0<y<l im P, .

The program contains two assignments to the variable z ,
z:=0 zi=zey .

Since we have aiready determined that y is always of the form 1/2" , it follows that z
must be a sum of some finite number (possibly zero) of elements of that form. This does
not tell too much about z ; it does, though, give the lower bound

assert 220 in P ,

since y is always positive.

12

The loop terminates when the exit test y<e¢ becomes true. Thus, whenever control
reaches the label £ , the relation yse must hold. This is expressed by the local invariant

E,;: assert yse .

Similarly, if the exit test is not taken and the loop body is executed, then the exit test
must have been false, i.e. yd¢.

Neither branch of the conditional statement affects 3, and therefore the relation yde
holds after the conditional statement as well. At that point 3 is divided by 2. if before
the division we had y)e¢, then at the end of the loop body we have 2+de. So, whenever
the loop body Is executed control returns to the head of the loop with the relation 2<y>e
holding. Since that relation does not necessarily hold when the loop is first entered with
9=1, It is not a loop invariant. Nevertheless, the disjunction of the relations y=1 and
2+9>¢ is a loop invariant, since one relation holds when the loop is first entered and the
other hoids every time the loop is repeated, l.e. we have

L,: assert y=1V2:9de .

Consider the conditional statement
if de(z+y)sc then z = 24y fi .
it is an abbreviation of the statement
if d«(z+y)sc then 2z = z+y else fi

which has an empty else-branch. The then-path of the conditional statement is taken
when d«(z+y)<c ; therefore, after resetting z to z+y we have d-zsc. Since the
programmer introduced the conditional statement to achieve some specific relation in
different cases, It is plausible that the relation d-z$c — achisved by the then-path of the
conditional — is the intended relation and holds for the else-path as well. This suggests
the candidate

L: suggest d-zsc .

Indeed, since d-z5¢ is true Initially, when 2=0 and ¢20, and is unaffected when the
conditional test Is false (since the value of z Is not changed), it invariantly holds when
controt reaches the head of the loop. We have derived the ioop invariant:

L,: assert dezsc .

The then-path is not taken when ¢<d+(z+y) . In that case 9 is divided in haif and 2

GENERAL OVERVIEW 513

Is left unchanged, yleiding c¢<d+(z+2'9) at the end of the current iteration. It turns out
that the then-path preserves this relation and that it aiso holds upon initialization. Thus
we have the additional invariant:

L,;: assert c<d«(z+2+) .
The loop invariants d-zsc and ¢<d+(z+2*y) remain true when the loop exited is taken;

along with the exit test y<¢, they imply that upon termination of the program the output
invariant

E.: assert [c/d-zjK2-

hoids. Note that the desired relation kk/d-zi<¢ is not implied.

The annotated program — with invariants that correctly express what the program

i e Al U . Dot ey

does — is:
¢ .] L]
o | assert 0sc<d, >0, ye1/2N, 220 in | ;
' | P,: begin' comment annotated bed division program | ’
| B: assert 0sc<d, €0 |
| (z,9) := (0, 1) |
. | loop L assert dezse, c<d«(z424), y=1V2+de | /
| suggest dezsc, c(d«(z+y) |
? : | until yse |
] : | AL de(z+49)Sc then z = 24y i |
: | y = I I
' | repeat |
| E.: assert [c/d-z|<2+¢ |
| | suggest k/d-zCe |
; | end . |
| ; L e
:z : We have omitted the purpose statements to avoid clutter.
| b
H
ﬁ
L
;o
AR

A BB 8 i o TR DR W I AT, Sy R : - w 3

14

3. Debugging

Now that we know something about what the program does, we can try to debug it.
Our task is to find a correction that transforms the actual output invariant

assert c/d-z|(2+e

into the desired output candidate

suggest [c/d-z)<e .

We shall then apply that transtormation to the program in an attempt to derive a correct
program.

© L Ba it o

Accordingly, we would like to modify the program in such a manner as to transform the
insufficient {c/d-z|<2+¢ into the desired [/d-zj<e ; we write

lc/d-2|€2¢e = k/d-z|<e .

The obvious difference between the two expressions, is that where the first has 2-¢ , the
second has just ¢ . So, to transform [c/d-z|<2+¢ into k/d-z|<¢ , we need only transform

2e>e

leaving the other symbols unchanged. This may be accomplished by replacing e with ¢/2,
l.e. by applying the transformation ¢ = ¢/2 . In this manner, we get

k/d-z|<2+¢ = |c/d-2|<2+¢/2 = |/d-z|Ce .

We see that the transformation e = ¢/2, applied to the output invariant |c/d-z|<2-¢ ,
ylelds the desired output specification k/d-z|<e . That same transformation is now applied
to the whole annotated program {excluding the programmer's suggestions). The symbol ¢
appears once in the program text: the exit clause

until y<e

accordingly becomes

until y<e/2 .
. The symbol also appears four times in the invariants; for example, the input assertion ¢>0
i transforms into ¢/2>0 which is equivalent to ¢>0.
1 e
The transformed program is
)
3) »

GENERAL OVERVIEW 18

assert 0scdd, >0, ycll?“. 20 in
.. begin comment corrected division program
B, assert 0scdd, X0
(z,9) := (0,1)
loop L,: assert d-zsc, c<d+(z4249), y=1Vi-yde
suggest dezsc, cld+(z+y)
until 9yse/2
if d«(z+9)sc then 1z := 24y fi
y = 9/2
repeat
E,;: assert [c/d-zi<e
suggest [/d-z|<e
end .

v

[T T S S S S e S s e —— -
e e — — — — — —— E— — — — —]

In an appendix, it is proved a transformation such as ¢ = ¢/2 preserves the relation
between the program text and invariants, i.e. the transformed assertions. are invariants of

the transformed program.

In this manner, we have modified the program to achieve the intended resuit {c/d-z{<e .
But note that the loop invariant still differs from that suggested by the programmer. The
difference between the two is that the programmer intended for c¢<d+(z+y) to be true,
while in fact c<d+«(2+2+y) holds. This can be remedied by applying the transformation

y=9/2 .
The variable y appears five times in the program code: The exit clause becomes
until 9/2<e/2 ,
or equivalently
until 9s<e .
The conditional statement becomes
if de(2+9/2)Sc then 2z := z+9/2 fi .
The assignment statement
y =1
transforms into
92 =1,

18

which, however, is not a legal assignment, since an expression appears on the left-hand
side. The Intent of this lilegal statement is to

achieve 9/2=1 varying 9y .
By multiplying the two sides of the equality by 2, it is seen to be equivalent to

achieve %=2 varying 9 ,
which may be accomplished by the assignment

¥ =2
Similarly, the original assignment
y = 92
gives rise to the goal
achieve /2 = (y'/2)/2 varying » ,

LA where)' represents the prior value of the variable y . Again, by multiplying both sides by
2 , we derive the assignment

9 = 9/2 .

Thus, we have obtalned the program:

assert 0<cdd, >0, yell2“. 220 in
P/: begin comment transformed division program
B,: assert 0scdd, X
(z,9) := (0,2)
loop L, assert dezsc, c<d(z+y), 9=2V2:9>¢
suggest dezsc, c{d«(z+y)
until yse¢
if de(z49/2)sc then 1z := 249/2 fi
y = I
repeat
E;: assert k/d-zi<e
suggest [/d-z|<e
end .

i G G . c—— A I D CTE—. — — —— G e
D TR I e R G G S d— t— —— — m— a—]

A

- ~ad o L . -oae ., e

GENERAL OVERVIEW 17

JRIOES ¥ W R S

Since the expression /2 appears thrice in the loop body, this program may be
slightly improved by evaluating the subexpression 9/2 before the conditional statement.
Wae obtain:

r
| assert 0sc<d, €30, yel/2N, 220 im
| P, begin comment good division program
B, assert 0sc<d, ¢X0
(z,9) = (0,2)
loop L, assert dexsc, c<d«(z+y), y=2V2+yde
until yse

y = y2

if d«(z49)Sc then 2 = 249 fi
repeat

E;: assert [c/d-z<e

end .

b e

I

(i S TS S I SEE ST S— —
N

Note that this program is ilmost the same as the original bad program. It differs in two
ways: the two loop-body assignments are interchanged (this presumably was the error),
and 9 is initialized to 2 rather than 1 (either initialization works).

1. Modification

Consider the following specifications:

P, begin. comment square-root program
assert a2l, ¢>0
achieve |va-zj¢¢ varying :z
end .

T T]
L]

We would like to use the corrected reai-division program as a basis for the construction of
the specified program for computing square-roots. We assume that the v~ operator is
not primitive.

PSS A PR e e (SN T T WA G A TR N S L S

To this end, we first compare the specifications of the two programs. The output
' specification of the division program is

i
:
{ ™ assert |[c/d-z|<e

while the output specification of the desired program is
T_‘) . achieve |va-7i(¢ varying : .

*
L
I
4
3
’
.
'
‘ 'lh_
H
:

18

The obvious analogy between the two is
c/d & Va ,

l.e. where one has c¢/d, the other has va . Thus, to obtain a square-root program from
the division program, we need to transform c¢/d into va . One way to do this would be via
the transformations

d=1,¢c= va) ,

which take ¢/d into va/l=va. Here d Is transformed into the identity element of the

division operator, leaving ¢ to become va. Alternatively, we could apply the
transformation

(u/v = vii,c = a)

where by u/v = Yyu we mean that every occurrence of the division operator is replaced
by the square-root operator applied to what was the numerator.

We apply the first set of transformations to the division program P,, annotated with
only those invariants essential for proving correctness. Replacing all occurrences of d
with | and all occurrences of ¢ with va@ and simplifying, yields

¥ |
| assert 0<va<l, X0 in |
| P, begin comment square-root program |
| B, assert 0sva<l, € |
| (z,9) = (0,2) |
| loop L, assert 25va, valz4y |
| until y<e |
| y = 9/2 |
| if 2+y<v/a then z = 24y fi |
| repeat |
| E, assert |va-zjCe |
| end . |
L)

The transformed program is guaranteed to satisfy the output specification |va-z|<e ;
unfortunately, it is inexecutable inasmuch as it contains the nonprimitive function v~ in
the conditional test.

it is assumed that knowledge about the subject domain is available. For example, we
need the following fact about the square-root function:

fact uSV7 s usy when u20 ,

Bondice: -

P

=
[]

-

GENERAL OVERVIEW

where u and v are universally quantified, l.e.
(Vu,v) (20 > usvimulso) .

This fact allows us to replace the test z+ySv@ with the equivaient (z+9)2sa. That zey
is indeed nonnegative, as required for the two tests to be equivalent, follows from the loop

invariant

L,: assert valzey

and the
fact 0<vu .

There remains an additional problem: a transformed program is only guaranteed to
satisfy the output specification for those inputs that satisfy the transformed input
specification. Unfortunately, the transformed input specification of our program,

assert 0<va<l, e>0 ,

is contrary to the given input specification ¢21 . To soive this, we can replace the code
preceding the loop with the goal

assert a2l, e>0
achieve z2<vg, Va<1+y varying z,jy .

to initialize the loop invariants 25va and Vva(z+y prior to entering the loop. Achieving
72<a Is equivalent to achieving z$va . And since it is given that ‘1<a , we need -only
achieve z2=zs1. To achieve the second conjunct va<z+y , given the

fact vusy when wu2l ,

we need only achieve z+y=1+9=a . Thus we have reduced the goal to
achieve z2=], l+y=¢ varying 1,y ,

giving rise to the assignment
(z,9) = (1,a-1) .

The square-root program that we have obtained is:

20

assert a2l, >0 in

P,. begin comment square-roof program
B, assert a2l, ¢>0
(z,y) = (l,a-1)
loop L, assert zsva, vaci+y

until y<e
y = 9/2
if (z+y)25a then z = 24y fi
repeat
E,: assert |Va-z|<e
end .

o G e w—— —— ——— — — ——— c— —
b o S — — — — — — — — —

Note that the global invariant 0<va<l no longer holds.

The alternative set of transformations for transforming the division program into a
square-root program was

(w/v = vYu,c=>a) .

Transformations that Involve specific functions such as u/v, are not, however,
guaranteed to yield a correct program, since the program may be based on some property
that holds for u/v but not for vu . These transformations are heuristic in nature; they
only suggest a possibly incomplete analogy between the two programs. Indeed, when
applied to the division program, the transformations yield

r
| suggest 0sa<d, ¢>0 in

| P,/: begin comment transformed division program

—_

|

l
[B/: suggest 0sald, >0 |
| @y = 0,2 I
| loop L: suggest d-zsa, ald«(z+y) |
| until ys<e |
I y= vy |
| if de(z+9)Sac then z := 24y fi |
| repeat |
| E): suggest |[va-zi<e |
| end , |
[]

ik dontioicanibiXisie cone

GENERAL OVERVIEW 21

which clearly does not compute V4. Since this set of transformations is not
correctness-preserving, the asserted invariants have been replaced by suggested
candidates.

What must be done is to review the derivation of the program, expressed in the
purpose statements and see where the analogy breaks down. The purpose of the division
program Is {c/d-z[<e which transforms into |vVa-zj<¢ as desired. The programmer achieved
lc/d-z|<e by breaking it into the conjunction of three subgoals, given in the statement

purpose c/d2z, c/d{z+y, yse

that appeared in the original program. The last conjunct became the exit test, and the
other two became loop invariants. These subgoais transform into

purpose va2z, va<z+y, y<e
which indeed imply the transformed goal |va-z{<e .

The purpose of the loop body of the division program (though it was left out of P)
was

purpose c¢/d2z, c/d<z+y, 0<y<y, ,
2

‘where I, represents the vaiue of the variable y when last at the head of the loop, at

tabet L, . In other words, the loop body reachieves the invariants while making progress

towards the exit test by decreasing y (to guarantee termination, that decrease cannot
be arbitrarily small). The loop~body subgoal of the transformed program, then, is

purpose vazz, Valz+y, 0<y<yb’, .

The division program first decreases 9 and then introduces a conditional with the
purpose c/d2z, cld<zsy .

It is here that the analogy breaks down. The loop body of the division program achieves
this purpose in two cases, by testing if d«(z+y)sc or not. For example, if d«(z+y)<c does
not hold, then ¢/d<z+y, as desired. On the other hand, the fact that d-(z+y)sa does not
hold in the square-root program telis nothing about va<z+y. We look, therefore, for a
transformation that will allow the implication

d+«(z+9)>a > Vaiz+y
to hold. As for the previous alternative, since z+y is nonnegative, the right hand side of
the impilication is equivalent to a<(z¢y)2 . Matching the left-hand side ot the implication

A

L

R A e P 2

with this inequality, tells us that the implication would hold if we could transform
d-(z+y) = (z+y)2 . Thus, where the division program has the function u-» , the square-root
program requires v2. We complete the analogy by adding the transformation u- => v2 ’

to obtain

(u/v = Y, ¢ = a,uw = v2) .

Finally, as with the first set of transformations, the initialization subgoal does not hoid,
and must be replaced by the assignment

(z,9) := (1,6-1) .

The same program

f
| assert a21, ¢>0 in
| P, begin comment square-root program

\

|

|
| B, assert a2l, ¢X0 |
| (z,9) := (l,a-1) |
| loop L, assert sva, valiey |
| until y<e |
| y =92 I
| if (249)%<a then z := z¢y i |
| repeat |
| E, assert |va-z|Ce |
| end |
L J

Is obtained.

5. Abstraction

We now have two programs, P, for finding the quotient and P, for finding the
square-root. Both programs utilize the binary-search technique. We would like to extract
an abstract version of the two programs that captures the essence of the technique, but
that is not specific to either problem. The resuitant abstract program schema can then be

used as a model of binary search for the solution of future problems.

Consider the second analogy that we found between », and P,:

(u/v e Yi,c o a,uv » v2) .

SR

A Anan,

GENERAL OVERVIEW 23

Both u/v and vu are functions; they may be generalized to some abstract function

f(u,v) . Similarly the generalization of u-w and v% is g, v) . Since both ¢ and ¢ are
variables, we can leave them as is. This gives us the following set of transformations to
generalize the division program:

(u/v = f(u,v), uv » glu,v)) .

Applying these transformations to the specifications

achieve [/d-zie varying : -
of the division program ylelds '
achieve |f(c, d)-zi<¢ varying z .

This, then, shall be the sbstract output specification of the schema. The division program
was

PP PR P S

|l P, begin comment good division program i ;
| B,: assert 0sc<d, ¢X0 | :
| (z,9) = (0,2) |
| loop L, sssert desc, c(de(z+y) | !
| until yse | :
I y =302 |
| if de(z+y)sc then 7 := 209 11 |
| repeat |
| E, assert |/d-zice | j
| end . | 1
b - J 4
Substituting the abstract predicates f and g into their respective positions in the

annotated program, we derive the schema:

|rP‘: begin comment (ransformed division program
B,: assert 0sc<d, X0
(z,y) := (0,2)
loop L, assert g(d,z)sc, c<gld, z+y)
until y<e
y = y/2
if g(d,z+4y)Sc then 1 = 24y fi
repeat
E,. assert |f(c,d)-z|<e
end .

F———————— —

et e B .

24

This schema is not necessarily correct for all instantiations of f and g, as the
original program relied upon facts specific to / and Indeed, there is nothing in this
abstract program to relate the function f that appears in the output specification with
the function g that appears in the loop invariant. In general, transformations
(abstractions) of specific function or predicates are not correctness-preserving. We
would like then to determine under what conditions this abstract schema does achieve its
specifications.

As in the modification step, the initialization assignment does not necessarily achieve
the desired loop invariants. We therefore replace the initialization assignment with the
subgoal

achieve g(d,z)sc, c<g(d,z+y) varying 12,9 ,

leaveing unspecified how to initialize the two loop invariants.

For the loop-body path to be correct, the truth of the invariant must imply that the
invariant will hold the next time around; this can easily be shown to be the case for any
function g . For the loop-exit path to be correct, we must have that the loop invariants
gld,z)sc and ¢<g(d,z+y) plus the exit test jy<e imply that the output invariant
If(c, d)-zi<e holds. For this to be the case, it suffices to establish the condition

assert g(w,u)sv = usf(v,w) .

This assertion holds if g is the inverse of a monotonic function f, l.e. f(g(w,u), w)=u
and (usv)=(f(u, w)<f(v, w) , as, for example, * is the inverse of / and u? (s the inverse
of vu.

in this manner, we have derived a general program schema for a binary search for the
value of f(c,d) within a tolerance ¢ :

P, begin comment binary-searck schema

B, assert g(w,u)sv = usf(v,w)
achieve g(z,d)sc, c¢<g(z+y,d) varying 2,9
loop L assert g(d,z)sc, c<g(d,z+y)

until y<e
y = 9/2
if g(d,z+9)sc then 1z := 249 fi
repeat
E;: assert [f(c,d)-z|<e

end .

F—————— e — ——

its output specification is

G il

i - o . . A

GENERAL OVERVIEW 25

assert |f(c,d)-zi<e ,
dnd its precondition for guaranteed correctness is
assert g(w,u)sv = usf(v,w) .

Clearly, the function g which appears in the schema must be primitive; otherwise, it must
be replaced by something equivalent for the schema to yield an executable program. The
unachieved subgoal

achieve g(z,d)sc, c<g(z+y,d) varying 2,9

must also be reduced to primitives.

6. Instantiation

We lllustrate how the binary-search schema just derived may be applied to the
computation of integer square-roots. Our goal is to construct a program that finds the
integer square-root z of a nonnegative integer a :

[
[P, begin comment (nteger square-root program

| B,: assert aeN

achieve 2=|va| varying 2
end ,

.
b e ——

where the function |u] yields the greatest integer less than or equai to u .

We cannot directly match this goal with the output specification of the schema
assert |[f(c,d)-z|<¢e varying z ,

or with any of the other invariants known to hold upon termination of the schema.
However, if we expand the goal z={va], using the definition of [u],

fact v={u] = vSuAuCv+1AveZ
(where Z is the set of all integers), we get the equivalent goal
achieve 15va, va<z+], 2€Z varying z ,

l.e. z should be the largest integer not greater than va . Since we know that the schema
achieves the two output invariants

assert sf(c,d), flc,d)Xzee ,

et o atiie ly sk,

we compare these invariants with the above goal. This suggests the transformation
(f(u,0) =» Vi,c = a,¢e= 1) J

to achieve the two conjuncts :<ve@ and va<z+l ; in addition, we will have to extend the
program to ensure that the final value of z is a nonnegative integer. For this purpose, we
append the subgoal

achieve 2¢Z protecting 5va, Va<z+] varying =z

to the end of the instantiated schema. The protecting clause means that the relations
2$va and Va<z+}, achieved by the loop, may not be clobbered when achieving the
additional goal 2€Z .

The precondition for the schema's cofrectness is
assert g(w,u)sv = usf(v,w) ;
instantiating it yields
assert g(w,u)sv = usvv .

Recalling that

fact usvi = ul<v when u20 ,

this condition may be satisfied by taking gl(w,u) to be u2 , provided that the argument
u Is never negative. This completes the analogy, obtaining the transformations

(flu,v) = Yu,c=>a,¢= l.g(w.u)-bu2) .

Applying this instantiation to the schema, we obtain the partially written program:

B

P,: begin comment integer square-root program
B,: assert aeN
achieve z1<va, Vaiz+y varying 1,9
loop L, assert 1sva, valrey
until y<i
y = 9/2
if (z+y)2sa then 1 = 24y fi
repeat
assert 25va, Va<z+l
achieve z€Z protecting :<va, va<i+| varying z
end .

-
[e L — —— — G— ——— — C—— — —
e i G—— . — —— G— — — — emm—— —)

1 N . That the argument z+y Is nonnegative follows from the invariant va<z+y .

GENERAL OVERVIEW 27

1. Synthesis

This program still contains two unachieved subgoals:
achieve 2Sva, Va<z+y varying 1,9
and
achieve zeZ protecting 2<va, valz+l varying r .
We show now how these subgoals may be achieved.

The first subgoal is a conjunction of two relations, zSv@ and va<z+y, which are to
be achieved simultaneously. It may be split into the two consecutive subgoals

purpose 8Va, vacz+y
achieve 25ve varying :
achieve Va(z+y varying 9y
assert z5va, Vacaey .

The first sets the variable z to some value satisfying z5v@ ; the second leaves z
constant so that zsva remains true, and sets y to some value satistying va<z+y . We
can solve the first by setting

z := 0

s

28

since z remains 0 while achieving the next subgoal va<z+y , that subgoal becomes

achieve v3<y varying y .

We shall return to this subgoal later. Of course, there is no assurance, as yet, that this
split will lead to a satisfactory solution; were it not to work out in the end, then we would
have to retrace our steps to this point and try something else.

There are two ways in which we might achieve the other remaining subgoal

achieve zeZ protecting z2<va, Vva<z+l varying z .

One is to take the current value of z which satisfies the two conditions 2<va and
va<z+1 and perturb it just enough to make it an integer while preserving those two
protected relations. This can be done by assigning

z = |z .
Alternatively, we note that the above subgoai Is equivalent to
achieve zeN protecting 1<va, va<z+l varying r

since zeZ and va<z+l imply that z is nonnegative. To achieve this, we set up the new
goal

achieve 2eN in P ,

by which we mean that zeN Is to be a global invariant of P,. Accordingly, we must

i establish zeN Initially and then preserve it throughout the loop computation. Initially
' z=0eN , as is desired. Since z is sometimes incremented by 9, the latter should also be
: a nonnegative integer. That gives us a new goal

achieve jeN in P, .

E Finally, in order to preserve the Invariant yeN , while it is repeastedly halved until it is

. no longer greater than 1, it is necessary and sufficient that yeZN be invariant. Thus, we
}' have the stronger goal
i achieve ye2¥ in P, .
For ye2N to hoid throughout, we need to ensure that it holds upon entering the loop.
Accordingly, we add the conjunct ye2N to the initialization subgoal va<y.
PR "

We are left with the unachieved subgoal

achieve va<s. ve2V varying 9y .

ey

S

! ?%¥h;%WM=W%W‘W- el s (Sl S YR 207 Ve L A‘:"" = ’ ' " -
GENERAL OVERVIEW 29
The first conjunct might be achieved by letting 9=a+l, while the second could easily be

achieved by letting 9=1 . However, though each conjunct is achievable by itself in this
manner, achieving both together is more difficuit, since in general these two solutions -
contlict with each other. So, instead, we transform this conjunctive goal into an iterative P

loop, choosing first to achieve ye2N + and then to keep it true while executing the loop
until the remaining conjunct, Va<y, is also satisfied. Since v~ is not a primitive function,

we must test for the equivalent a(;y2 :

purpose va<y, ye2V
achieve 362“ varying 9y
loop L. assert ye2N
until a<y2

approach a(y2 protecting ye?N
T repeat

. assert a(y, ye‘zN .

To initialize ye2N » we lat y=2° and assign

y:=1.
Within the loop, we have the subgoal

approach a(y2 protecting ye2N '

.e. we wish to preserve the invariant ye2" while making progress towards the exit test

a(y2 . Since we know that initially y=1, and uitimately we want 0sva<y, it follows that
¥ Is increasing. Assuming that y Iis to increase monotonically, we get the loop-body
subgoal 3

achieve y)yb‘ protecting ye?“ .

where I, is the value of 9 when control was fast at L, . it follows that 9 must be

) . muitiplied by some positive power of 2, e.g.

y = 29 .

We have obtained the following program:

r

| P,: begin comment integer square-root program

o T G s, G — — . — —— — ST G WD W ——

assert aeN, zeN, ye2" in

B assert aecN A
purpose z5va, Vaczsy
=0
9 =1
loop L,: assert ye?"
until a(y2
y =29
repeat
loop L,: assert sva, valivy
until y<i
y = 9/2
if (z49)%Sa then 1z := z¢y fi
repeat
E, assert 25va, vaci+l, zeN
end .

S

This program can be improved as will be illustrated in the chapter on synthesis.

™ > 7

BL s R
£ 138 oy .
, RRAEL et e P . e

oy

31

(e

CHAPTER 11 I

PROGRAM MODIFICATION AND DEBUGGING

2@ wpan 4 os

ram

g

WP N % S e

1. INTRODUCTION

Program modification has as its goal the transformation of a given program into a new
program to achieve a different goal. We have already seen how a program that divides is
modified to compute square-roots. The essence of our approach is to find an analogy
between the specifications of the given program and those of the program that we desire
to construct. This analogy Is then used as the basis for transforming the existing program
to meet the new specifications. Invariant assertions play an important role in this process.
Program debugging is considered as a special case of modification: if a program computes
wrong results, It must be modified to achieve the Intended resuits.

The use of analogy In problem solving in general, and theorem proving in particular, is
discussed by Kiling [1871]. Other works employing analogy are Brown [1876] and Chen
and Findler [1876]. The modification of an already existing program to solve a somewhat
different task was suggested by Manna and Waldinger [1876] as part of a
program-synthesis system. Also, the STRIPS (Fikes, Hart and Nilsson [1972]) and HACKER
(Sussman [1976]) systems were to some extent capable of generalizing and reusing the
robot plans they generated. Recently, Ulrich and Motl [1977] have been investigating the
role of analogy in program synthesis. Katz and Manna [Apr. 1976] and Sagiv [1976])
discuss debugging techniques based on invariant assertions; Boyer, Eispas, and Levitt
[1976] and King [1976] describe debugging aids based on the symbolic execution of a
program.

The next section elucidates the basic aspects of our approach to program
modification with the aid of several relatively straightforward examples. More subtle
facets of the techniques are iliustrated in the examples of Section 3. The correctness of
the technique Is discussed in an appendix.

2. OVERVIEW

For program modification, one is given a known correct program with its input-output
specification and the' specification for a desired new program; comparison of the two
specifications suggests a transformation that is then applied to the given program. Even it
the transformed program does not exactly fulfill the specifications, it can serve as the
basis for constructing the desired new program.

- agmr et YRS

s L T D ———

PROGRAM MODIFICATION AND DEBUGGING

1. Basic Technique: Glodal Transformation

We distinguish between two types of objects, constants and variables: a constant is any
symbol appearing in a program with assumed properties, e.g. 0, true, +, and 2; a
variable is any symbol appearing In the program with no assumed properties other than
those mentioned in the input specification. A variable that changes value during program
execution is termed a program variable; any other variable is considered to be an input
variable. A program variable appearing in the output specification is called an output

varlable.

In the examples of program modification presented here, we stress transformations in
which all occurrences of a particular symbol throughout a program are affected. Such
transformations are termed “global®, in contrast with “local® transformations that are

applied only to a particular segment of a program.

As a simple example, consider the following annotated program (due to R.W. Floyd):

- 1
| P,: begin comment array-minimum program |
| assert n20 |
| 2= |
| loop assert min(A[y:2+9))=min(4[n:2:n]) , 0sysn |
| until 9=0 |
| if A[29-1]$4[2+9]) then A[y-1] = A[2:y-1] !
| else Aly-1] = A[29) |
| f |
I y =yl I
| repeat |
| assert A[0]=min(A[n:2:n)) |
| end . |
|)

The symbol n appearing In the program Is an input variable, A4 is an output variable, and
9 Is a program variable; the symbois 0, min , <, etc. are constants.

Given an array segment A[n:2.n] that is nonempty (l.e. n is nonnegative), when this
program terminates, A[0] will contain the minimum of the values of the n+l array
elements A[n], A[n+1],..., A{2:n]. This output specification is formally expressed In
the final statement

assert A[0]=min(A[n:2:n)) .
That the program satisfies this specification may be proved using the loop invariant
assert min(A[:2-9))=min(A[n:2:n]) , O2ysn .

34

(This invariant holds initially when y=n , is maintained true by the loop body, and, together
with the exit test y=0, implies the output specification, since min(A[0:2:0])=A4[0] .

To modify this program to compute the maximum of the array, rather than the minimum,
we compare the specification of the given program P ,

assert A[0)=min(A[n:2:n]) ,
with the output specification of the desired program P, ,

achieve A[0]=max(A[n:2:n]) varying A[0:n-1]
We say that we are looking for an analogy
A[0J=min(A[n:2:n]) & A[0)=max(A[n:2n]) .

The obvious analogy between the two specifications is that one has the function min
where the other has max , lL.e.

min & max .
This analogy suggests that by replacing all occurrences of min in the first program,
we may obtain the desired max program. But the transformation min = max alone will
not work. The reason is that certain properties of the constant min were used in the

construction of the program, and those properties do not hold for the new function max .
Later on, we shall see how this problem is dealt with.

in the meantime, there is another way to effect the transformation
A[0J=min(A[n:2:n]) = A[0)=max(A[n:2:n]) .

We first eliminate the function max(A4) by replacing it with the equivalent -min(-4),
where -A (s equal to the array A with each element negated. It remains to transform

A[0)=min(A[n:2n]) = A[0)=-min(-A[n:2n)) .

Since we do not want to tunsfdm the constant min , we would like the right-hand sides
of both equalities to begin with min . Muitiplying both sides of A[0]x-min(-A[n:2°n]) by
-1, we are left with

A[0)=min(A[n:2.n])) =» -A[0]Jemin(-A[n:2:n]) .
Now the transformatio:.
A= -4,
applied to the output specification of the given program, ylelds

e o nia. o AL ot - oAl IIGARD O~ Mt ot st ek~ —

W

PROGRAM MODIFICATION AND DEBUGGING as

assert -A[0J=min(-A[n:2:n])
which is equivalent to the desired

achieve A[0)=max(A[n:2:n]) varying A[0:n-1] .

Since A = -A is a transformation of the array variable A, and variables have no
assumed properties, we can obtain a program guaranteed to satisfy the transformed
specifications by applying this transformation to the program. (By applying the same
transformation to all occurrences of A in the verification proof of the original program, a
correctness proot for the transformed program Is obtained.)

The variable A4 appears within the program text only in the conditional statement

if A[2:9-1]SA[2:9] then A[y-1] := A[2+-1]
else A[y-1] := A[249]
fi .

Applying the transformation 4 = -4 10 this statement yields

if -A[2:9-1]s-A[29] then -A[y-1] := -A[2-1]
else -A[y-1] = -A[249]
fi .

The test -A[2-y-1]s-A4[2+y] is equivalent to A[2:y-1]24[2-y]. But the transformed
assighment statements are "illegal", since a function, in this case -4, may not appear on
the left-hand side of an assignment. The intent of the illegail statement,

-Aly-1] = -A[29-1]

however, is for the new value of the expression -4[y-1] to be made equal to the old
value of -A[2:9-1] by changing the value of the array 4. In other words, we wish to
achieve the relation given by the goal

achieve -A[y-1]=-4'[2:y-1] varying A[0:n-1] ,

where A’ denotes the value of the array A before this achieve statement. To obtain an
assignment to A4, we must isolate the variable A on one side of the equality. We
therefore multiply both sides of the equality by -1, obtaining the goal

achieve A[y-1]=4'[29-1] varying A[0:r-1] .

Since the variable 4 appears on only one side of the equality, and 0Sy-1<n by virtue of

the invariant 0<ysn and the exit test 9=0 , we may achieve the desired relation between
the new value of 4 and the old by assigning to 4 the vaiue of the expression on the
other side of the equality:

Aly-1) = A[24]-) .
Similarly, the transformed assignment
-Afy-1] = -A[2+]

becomes
Aly-1] := A[2+] .

Global tranformations are applied to the invariants annotating the program as well as
to the code. Thus the loop invariant

assert min(A[y:2+9])=min(A[n:2:n]) , 0Sysn
becomes

assert min(-A[y:2+9])=min(-A[n:2-n]) , Osysn ,
or equivalently

assert max(A[y:2:y])=max(A[n:2:n]) , Osysn .

We have derived the following program to compute the maximum:

P,. begin comment array-maximum program'

9 i=n
loop assert max(A[y:2:9))=max(A[n:2-n]) , 0sysn
until y=0

it A[2+9-1]24[2+9] then A[y-1] = A[2-1]
else A[y-1] = A[2+]

fi
y =yl
repeat
assert A[0)=max(A[n:2-n))

end .

[TS T TR S S Sts e — — —
e e e e e e Em — — — — —]

Note that the array -4 no longer appears in the program; only the original A Is actually
used.

As we have seen, giobal transformations are applied to all the invariants as weil as to
the code. In particular, a transformation that affects an lqput or output variable changes

" A oY

PE————— e ; Ty
~~~~~~~ - ~ - PR Ty ...‘iu_ o
|
PROGRAM MODIFICATION AND DEBUGGING 37

the output invariant correspondingly. Thus, for program modification, one looks for a
transformation of input and/or output variables appearing in the output invariants that will
produce invariants implying the desired output specification.

2. Special Case: Program Debugging

We consider tha debugging process as an Important special case of program
modification: a program that computes wrong results must be modified to compute the
desired (correct) resuits. If we know what the "bad"® program actually does, then we may
compare that with the specifications of what it should do, and modify (debug) the incorrect

program accordingly. 1

As an example, consider a program Intended to compute the integer square-root z of
the nonnegative intager ¢ ; that is, ¢ should lie between the squares of the integers z
and z+1 . The goal, then, is to achieve the relation

achieve zzsc. c((z#l)z, zeN

where N is the set of nonnegative integers, and the given program is

P,: begin comment integer square-root program
(z,5,0) = (1,0,8)
loop until ¢<s
(2,5,0) = (z+1,501,42)
repeat
end .

L

Using the methods described in the chapter on annotation, invariants may be
generated that express what relations this program achieves. It turns out that the global
Invariants

assert (=21+¢], :-zz-l, zeN+|

where N+| is the set of positive integers, hold throughout the program. Furthermore the
loop Iinvariant

assert c2s-f

holds whenever control is at the head of the loop. Upon termination, the global invariants,
the loop invariant, and the exit test all hold:

assert (=24}, 3-12-1. zeN+], c2s-t, ¢Cs .




a8

it follows that the given program haits with the relations

assert (2-1)2501. col<z2. zeN+|

holding between the variables, rather than with the desired goal

achieve zzsc. c<(z+l)2. zeN .

The cause of the bug was the inadvertent exchange of the initial values of z and s .

Comparing the desired goal with the actual invariants, we note that the former may be
obtained from the latter by replacing z with z+1 and ¢ with ¢-1. Applying the
transformation ¢ => c-1 to the program statements affects only the exit test ¢<{s, which
becomes c¢-1<s, or equivalently c¢<s. The transformation z = z+] affects two other
statements: the initialization z:=] becomes z+l:=]1 and the loop-body assignment z:=z+]
becomes z+1:=242. These resuitant assignments, however, are "“illegal”, inasmuch as an
¢ expression such as 2+1 may not appear on the left-hand side of an assignment. Instead,
’ the expression z+] Is given the initial value | by assigning z:=0, and the value of the
expression z+l Is incremented to z+2 by the "legal" assignment z:=z+] .

We have thus obtained the corrected program:

P/: begin comment debugged integer square-root program

(z,5,8) = (0,0,9)
loop assert c¢2s-f

until c¢ss
(2,5,8) := (241,548, 142)
repeat

assert z%sc, c<(z+1)%, zeN

end .

oo S e — —— ———— —
e e — —— —— — — —— o]

Katz and Manna [1876] suggest that when there is insufficient information to prove
] either the correctness or incorrectness of a program, it may nevertheless be desirable to
' "debug" the program. The possibly incorrect program may be transformed, using known
’ invariants, into a new program which is unquestionably correct. Even when invarlants are

i, found for an incorrect program — it is often more difficuit to discover invariants for an
incorrect program since it may in fact not compute anything meaningful — there may be no

, way to transform them into the desired specification. It then becomes necessary to
consider the sources in the code of different invariants separately.




IEYER-E TP S EPORTC -

PROGRAM MODIFICATION AND DEBUGGING 39 1

3. Correctness Considerations ¥

In the above examples, the transformed programs were correct; i.e. by the nature of
the transformations, the transformed programs do in fact satisfy the transformed
specifications. As we noted, this is not necessarily the case with any transformation.

PP

Suppose, for example, that we are given the program: |

P, begin comment array-minimum program
(y,2) := (0, A[0))
loop assert z=min(A[0:9])
until y=n

l
I
I
I
I
I y =yl
I
I
I
|
[

\

I

I

I

|

I

z := min(z, A[y) |
repeat |
assert z=min(A[0:n]) |
end |
S |

: for finding the minimum of the array A[0:n], and we wish to construct a program to tind
I the maximum of the nonempty array A[l:n]. The given program achieves the output
relation

it i e b b iRl iR

E

assert z=min(A{0:n]) ,
while the output specification of the desired program is

achieve z=max(A[l:n]) .

Thus, the transformations min = max and 0= | suggest themselves. Though in this
case applying these transformations happens to yieid a correct program, such
transformations of constant symbols do not necessarily preserve correctness. Were the
| function min not explicitly used in the program, e.g. in the program

P/: begin comment alternative array-minimum program

(9,2) := (0, A[OD)
loop assert z=min(A[0}y])
until y=n
g = 9+l
if A[y)Xz then z = A[y] fi
Tepeat
assert z=min(A[0:n])
end ,

IR ol
[4 .
>

— -
]

o e c— —— — —— —— ——

b e — — — —— — —— — a—

I ”I then the proposed transformation min =» max would clearly not work.




40

Global transformations, where an input variable is systematically replaced by a
function of only input variables, or an output variable by a function of output variables or
of both input and output variables (as in the previous examples), always yieid a program
satisfying the transformed specifications. However, transformations of constant symbols
(as in this last example) are not guaranteed to result in a program satisfying the
specifications. Details regarding correctness-preserving transformations may be found in
an appendix.

Hence, for some transformations, correctness must be verified. For this purpose,
invariant assertions are utilized. As we saw above, invariants are essential in our
approach to debugging too, as it is necessary to have some idea of what the program
actually does before it can be corrected.

Global transformations are applied to all invariants, as well as to the code. Using
these transformed invariants, verification conditions for the new program may be
generated; if they hold, then the new program is correct. Alternatively, applying the
transformations to the (unsimplified) verification conditions of the original program yields
verification conditions for the transformed program. It is best if the conditions are given in
the form of a subgoal tree, reflecting the logical steps taken in constructing the program.
This subgoal structure may be expressed in purpose statements.

Returning to the above example, we wish to modify the first version of the min
program P,, to obtain a program that achieves z=max(A[1:n]) . Applying the

transformations min => max and 0= | yields

P, begin comment array-maximum program
(3.2) = (1,401)
loop assert z=max(A[l:y])
until y=n
y = 9+l
z = max(z, A[y))
repeat
assert z=max(A[l:n])
end .

i SR — S —— —— GE—— S—— — —
e G c— A —— — — —— o —— ]

Using the new invariants, the correctness of this max program may straightforwardly be
shown.

On the other hand, applying these transformations to the alternative min program
P,/ would yield



TR o RN S S W o, i e

PROGRAM MODIFICATION AND DEBUGGING 41 Ly

P,/ begin comment suggested array-maximum program
(9.2) = (0, A[0))
loop suggest z=max(A[0:y))
until y=n
9 = y+l
if A[yKz then z := A[y] i
repeat
suggest z=max(A[0:n])
end .

[ S S SO - VI G S— ——— a——
b e

We have replaced the assertions with suggestions, since correctness is not guaranteed
by transformations that involve constants (in our case min ). iIndeed this program is
incorrect, since the loop body does not preserve the candidate loop invariant

e suggest 2=max(A[0:y]) .

in the next subsection, we discuss what can be done in such cases.

' 4. Completing an Analogy

As discussed above, the verification conditions will not always hold for a given set of
transformations. There could, for example, be unrelated occurrences of 0 in the min
: program P/ (in which case the giobal transformation 0= | would be inappropriate) or
’ the function symbol min might not appear explicitly in the program at ali (and therefore
the transformation min = max would be ineffectual).

The program

.

P/: begin comment alternative arrey-minimum program
(y.2) := (0, 4[0])
loop assert z=min(A[0:y])
until y=n
Y =yl
if A}z then z:= Afy] fi
Tepeat
assert z=min(A[0:n])
end

b ot s v o G s s - s am)




(i

42

has several verification conditions. One of them corresponds to the loop-body path when
the conditional test is true; it may be represented as

assert y=zn

y = 9+l
assert A[yKz
z = Aly] .

Since the program is correct, we know that the loop invariant holds each time control is at
the head of the path, and that if that path is taken, then the invariant holds at the end of
the path as well. So, assuming that the invariant z=min(4[0:y]) holds and that the exit
test y=n Is false, then after incrementing y and setting z to A[y] when the conditional
test A[y)<z is true, the invariant z=min(4[0:9]) again holds, for the new values of y and
z . In other words, we have

z=min(A[0:9]) A y=n A Aly+1Kz >  A[y+1J=min(A[0:9+1]) .

Applying the two transformations, 0 = | and min = max , to this condition we obtain
z=max(A[1:9]) A y2zn A Aly+1z >  A[y+1]=max(A[1:9+1]) .

However, the condition no longer holds, and we must try to find a way to correct that. The
condition is equivalent to

z=max(A[1:3]) A y=n A A[y+1Kz > A[y+1}=max(max(A[1:y]). Aly+1]) .
which, in turn, simplifies to
Aly+1Kz >  Aly+1]=max(z, A[y+1]) ,

Aly+iKz > Aly+ilRz .
Now, matching the two sides of this implication, suggests completing the analogy with the
additional transformation < = 2 .,

This transformation In fact makes all the verification conditions valid and yields a
correct program for tinding the maximum:

skl i N

e T

i b oo D\ i L.

Py




PROGRAM MODIFICATION AND DEBUGGING 43

P,”: begin comment alternative array-maximum program
(v.2) = (1,401)
loop assert z=max(A[l:y))
until y=n
g = 9+]
if A[y]2z then z := A[y] fi
repeat
assert z=max(A[1:n])
end .

I

Note that the additional transformation could be localized to the conditional statement,
since its verification conditions are the only ones that fail.

Were 0 not to appear explicitly in the initialization, say If we had instead
y = 1-1
z = Aly] .,
then the verification condition for this path — after applying the transformation
(0 = 1, min = max) — would be

A[1-1J=max(A[1:1-1]) ,
which does not hold. It may then be necessary to write a new program segment that would

initialize the loop invariant z=max(4[1:y]) by setting 9 and z to appropriate values. The
goal

achieve z=max(A[1:y]) varying 5.z
can be satisfied by the assignment

(. 2) = (1, 401] .

Were 0 to appear in unrelated parts of the program — say for the purpose of
iHustration that we had an additional loop-body assignment 9:=9+0 — then the
transformation 0 = | would result In an incorrect program. in such cases, analysis of the
(loop-body) verification conditions would suggest not applying that transformation to that
occurrence of 0.

Another problem that sometimes arises in program modification is that the
transformations only achieve part of the output specification. In such cases, it may be
possible to extend the program to achieve all the desired parts by achieving the missing
parts at the onset and maintaining them invariantly true until program termination.




44

Alternatively, we could append new code to the end of the program that will achieve the
additional parts — without "clobbering” what has already been achieved by the program.

For example, consider the case where it is desired that P also find the position x,
in the array, of the minimum element z . We can extend the program to

achieve z=A[x] in P, varying x

by maintaining that relation as an invariant throughout the execution of the program.

Synthesis and extension are treated in a separate chapter.

3, EXAMPLES

In this section, we present two examples of program modification. We begin with an
incorrect regl-dbvislon program and show how to correct it. This is the same program as
appeared in the overview chapter; here we go into greater detail. Then we modify a
square-root program to search a sorted array for a particular element.

Example 1: Bad Rea! Division to Good Real Division.

Consider the problem of computing the quotient z of two nonnegative real numbers ¢
and d , where ¢<d , within a specified tolerance ¢, 0<e. The given program is:

|r P,: begin comment bad real-division program
assert 0s<c<d, 0<e
(z,9) = (0,1)
loop suggest 25c/d, c/d<z+y
until y<e
if d«(z+y)Sc then 1z :» 24y fi
y = 9/2
repeat
suggest z5c/d, c/d{z+e
end .

e




L I
¢
@
M
¥
g
<

U P b BRSNS 5+ e s Lt e st

PROGRAM MODIFICATION AND DEBUGGING 45

The Initial assertion
assexrt 0<céd, 0<4e

contains the input specification that the input variables ¢, d and ¢ are assumed to
satistfy. The statement

suggest sc/d, c¢/d<z+e

at the end of the program expresses the output specification of the program which the
program is believed to achieve. But, for example, ¢=), d=3, and e=1/3, which satisfy
the input specification, yield z=0 which does not satisfy the second conjunct c/d<z+e of
the output specification.

Before we can debug this program, we must know more about what it actually does..
For this purpose, we first annotate the program with loop and output invariants. The
annotated program - with invariants that correctly express what the program does — is:

assert 0scdd, 0<¢e¢
(z.9) = 0, 1) ‘
loop assert d-zsc, c{d+(z+42+)
until y<e
if d«(2+49)sc then z = 24y fi
y = 912
repeat
assert d-zsc, c(d«(z+2-¢) .

The desired relation ¢/d<{z+e Is not implied by the output invariants.

We now have the task of finding a transformation (correction) that transforms the
actual output invariant

assert dexse, cCd+(z42+¢)

into the desired goal
suggest 25c/d, c¢/dCz+e !

or equivalently,

suggest d-zsc, cld«(z+e) .




46

The transformation will then be applied to the program. Accordingly, we would like to
modify the program in such a manner as to transform the insufficiently strong c<d+(2+2-¢)
into the desired c<d-(x+¢) and at the same time preserve the correctness of the other
conjunct of the specification: ‘

(c<d+(242+¢) = c<d+(z+¢), doz<c = d-2sc) .

The expressions c{(d*(z+2+¢) and c¢{d-(z+¢) differ in that the former has 2+ where

the latter has just ¢. So if we can transform 2+¢ = ¢, then we will have transformed the

specifications as desired. In order to transform the expression 2+« into ¢, we can
transform the input variable ¢ into ¢/2. We, therefore, apply the transformation

e=>ef2

to all occurrences of ¢ in the program; all other symbois in the program are left
unchanged. Only one executabie statement — the exit clause — is affected, giving

Correction 1: Replace the exit clause with
until y<e/2 .

The resuiting program is:

P/: begin comment corrected real-division program
assert 0sc<d, 0<e/2
(z,y = (0, 1)
loop assert dozsc, c<d+(242+)
until yse/2
if de(z+9)Sc then 1z := 24y fi
y = /2
repeat
assert d-zsc, c{d+(242+¢/2) .

]




PROGRAM MODIFICATION AND DEBUGGING 47

Had we matched the 6utput invariants
assert d-zsc, c{d+(z+42+¢)
with the original output specification
suggest z25c/d, c/d{z+e ,
then the transformations
(d=>1,c=>c/d,e=>e/2)

would suggest themselves. Here d is transformed “into the identity element of
multiplication, so that d+z = z. This set of transformations leads to the same program,
except for the fact that the conditional test is transformed into z+y<c/d which contains
the nonprimitive division operator. Since d is positive, this nonprimitive test is equivalent
to the primitive test d+(z+y)sc , which may be substituted for it.

Two additional debugging transformations may be obtained. Again we begin by
comparing c{d+(z+2+¢) with ¢<d~(z+¢), but this time' we try to leave ¢ unchanged. We
therefore try to isolate ¢ on the right of both Inequalities. Accordingly, we wish to
transform

(c/d-2)/2¢e = cld-z<e .

Matching the two sides of the inequalities leaves us with (c/d-2)/2 = c¢/d-z . Multiplying
both by 2, we get

c/d-z = 2(c/d-2) = 2c/d-2.z = c/(d/2)-22 .
This leads to the transformations

(c=2¢,2=22)
or

(d=df2,z=22) .

Applying these transformations to the second conjunct d-zS¢ gives either d+2.z<2+« or
d/2+2:25¢ , both of which simplify to d-zsc. This is exactly what was wanted and no
further transformations are necessary.

Doubling z and either doubling ¢ or halving d in the conditional test d-(z+y)sc _

ylelds a test equivaient to d+(z+y/2)sc. Transforming z into 2.z affects two additional

statements: the Initialization z:x0 becomes the “illegal® assignment 2¢z:=0, which is
equivalent to the "legail"

z = 0 .

Similarly, the assignment z:=z+9 of the then-branch becomes 2:z:=2:z+y ; in order to

R R g R, "Ry 5 SR BPREA  {ore © it

e e e e e

T TR s

P ————




48

achieve 2-2:2:7'+y varying =z ,
we can assign
z = z4y/2 .
No other statements are affected by either of the two modifications; thus they both yield:

Correction 2: Replace the conditional statement with
if d-(2+9/2)sc them z := 2+49/2 fi .

in general: in order to transform f(u) = v, for any expressions u and v and

function f, we may transform u = f(v) , where f~ is the inverse of f. When applying
a transformation y = f(y) to an assignment y:=g(y) , we get an illegal assignment

S = g(f(y)) .
To

achieve f(3)=¢g(f(y')) varying y ,

we can apply the inverse function f~ to both sides, suggesting the assignment

y = UGN .

Each of these possible sets of transformations involved one of the input variables e,
¢, or d. One must, however, be careful when transforming input variables, since the
transformation should be applied to the input assertion as well, possibly changing the
range of legal inputs thereby. In our case, the transformations we have performed pose no
problem: Applying ¢ => ¢/2 to the input assertion

assert 0sc<d, 0<e
yields the equivalent assertion
assert 0<c{d, 0<e/2 .

Therefore, halving ¢ has no effect on the input range, and the transformed program is
correct for any inputs satisfying the given specification. Moreover, since in fact the
condition ¢<2+d, rather than c¢<{d, is strong enough to imply that the loop invariants
dezsc and ¢<d*(z+2-y) hold after the initialization assignment (z,y):=(0, 1), (this is easily
seen by substituting 0 and | for z and 9, respectively, in the invariants), we can relax
the Input assertion of P, to

assert 0<c{2.d, 0<e .

5




PROGRAM MODIFICATION AND DEBUGGING

Then, replacing the ¢ in ¢<2:d by 2« (or the d by d/2 ) still yields a program correct for

inputs satisfying c<d , as is desired.

Our program after Correction 2, annotated with appropriately modified invariants Is (all
¢ have been replaced by 2« and all z by 2-z and the resultant expressions have been

simplified):

PS
assert 0scd<d, 0<e
(z,9) = (0, 1)
loop assert dez<c, c<d+(z+y)

until y<e

y = 9/2

repeat
assert dexsc, c(d+«(z+¢)
end .

[T T T T T T T T

": begin comment good real-division program

if d-(249/2)sc then 2z := 249/2 fi

e e S —

Example 2: Real Square-root to Array Search.

In this example, we show how the square-root program

P, begin comment square-root program
assert a2, eX0
(z.y) = (l,a-1)
loop assert Sva, va<z+y
until ys<e
y = 9/2
if (z+9)2sa then z = 24y fi
repeat
assert 25va, Valiee
end

r—_.—— — e c————

|
|
|
|
|
|
|
|
|
|
!

49




60

may be modified to obtain a program that searches for the position z of an element b
known to occur in an array segment A[1:r]. The array is assumed to contain nonnegative
integers sorted in nondescending order. This example will illustrate a number of difficulties
that may be encountered.

Our goal is

P .

.- begin comment array-search program
assert u<voA[ul]<A[v], A[u)eM, bebag(A[l:n])
achieve A[z)=b varying z

end ,

R S ——
e e e —— c— ]

where N is the set of nonnegative integers and bag(A[1:n]) denotes the multiset (bag)
of elements in the array segment A[l:n]. We shali allow indexing of an array by any real
number, and adopt the convention that the intended element may be found by truncating
the index, i.e.

fact Aful=A[|u]] .

(In a similar manner, we could develop a program following the Aigol-60 convention of
rounding-off the index.)

The desired goal
achieve A[z]=b varying =z
is not directly comparable with the output invariants of the given program
assert 2sva, Valz+e .

So we first develop the goal somewhat.

As a first try, we replace the desired goal with the equivalent conjunctive goal
achieve A[z]sb, bSA[z] varying z ,

guided by the fact that we wish to achleve an equality, while the given program achieves
an inequality. Since we are dealing with integers, this is the same as

achieve A[z]<b, d<A[z]+] varying z .
Accordingly, we are looking for a transformation
zSVaAvalzse m A[2]<BAOCA[2]+] .

and try to compare the conjunct 2Sva with A[z])sd . (Since A Is commutative, we could




PROGRAM MODIFICATION AND DEBUGGING 51

Just as well begin by trylhg to compare 2Sva with 6<A(z)+] .) Matching the two sides of

the inequality, we get (z = A[z], va = b) ; in order to obtain va = b, we can let a =» b2,
Applying these transformations to the remaining conjunct +a<z+e¢ leaves us with
b<A[z])+e = b<A[2]+] ; this suggests the additional transformation ¢ = 1 .

Applying the three transformations

(2= A[z).a =2, e= 1)

to the given square-root program yields

|r P, begin comment proposed array-search program
| assert 5221, 150

| (A[z.y) = (1,82-1)

| loop assert A[z]sb, b<A[z]+y

| until y<i

| y = y/2

| it (A[z]+9)2<b2 then A[z) := A[z)ey fi
| repeat

| assert Afz)sb, b<A[z]+]

| end .

L

]

There are, however, a number of problems with this program, the insurmountable one !ying
In the conditional-branch assignment A[z):=A[z]+y . The problem is that the original goal
stated that only 2 is an output variable, while the array A Is an input variable which may
not be modified by an assighment. Furthermore, there is no way to

achieve A[z)=A[z']+y varying z ,
since the value A[z']+y iIs not known to appear in 4 at ail.
So we must look for another alternative. Since A[u)=A[|u]], it is sufficient to
achieve A[|z])=d varying :
in order to achieve our goal
achieve A[z])=b varying =z .

At this point, we would like to extract z from within the expression A[|z]] . as it appears




by itself in the output invariants of the given program. To this end, we use the function
pos(A, u) which gives the position of the (rightmost) occurrence of the element u in the
array A ; itis an inverse of the array indexing function 4[v], l.e.

fact pos(A,u)e?l when ueAd
{ Z is the sat of all integers), .

fact A[pos(A,u))su when ued ,
and

fact pos(A,u)>v-1 when Alv}=u .

instantiating the second fact with b for u yields A[pos(4,5)])=b, since it is given that
beA ; thus, in order to

achieve A[|z]]=b varying :z ,
it suffices to
achieve pos(4,b)=|2] varying 1 .
Applying how the definition of ),
fact v={u] s vsuAucv+lAvel ,
we obtain the conjunctive goal
achieve pos(4,0)Sz, 2{pos(A4,b)+1, pos(4,b)eZ varying z .
Since the third conjunct pos(4,b)eZ is always true, we are left with the goal
achieve pos(A4,b)Sz, 2{pos(A,b)+]1 varying z .

The current goal Is still not readily comparable with the output specification of the real
square-root program,

assert z5va, valr+e .

while for the array-search program the output variable z appears on the right-hand side
of the < relation and on the left-hand side of the ¢ relation, for the square-root program
the sides are reversed.

One possible solution is to transform the predicates < and <. To get
25Va = 22pos(A, D) ,
we may apply the transformations

(s = 2, va = pos(4, b)) .

T TR £,



I b : : .
[ L SV S R e e Rt e e

PROGRAM MODIFICATION AND DEBUGGING 63

To obtain the second transformation va = pos(4,b), we let a = pos(;i.b)2 . Applying
these transformations to the conjunct va(z+¢ leaves

pos(A, b)<zse = pos(A,b)+1>z .

Transposing to get just pos(4,5) on the left of the inequalities, gives
pos(A,b)<z+e = pos(A,bd)dz-1 ,

80 we add the transformations (< = >,¢ = -1). All together we have

(s=2,a po:(A,b)z, (=),em-]) .

Applying these transformations to the given square-root program yields

(2,9) := (1, pos(A, b)2-1)

loop suggest 22pos(4,b), pos(4,b)>z+y
until y2-1
y =312
if (z+y)2zpos(4.b)2 then z := z+9 fi
repeat

suggest z2pos(4,5), pos(A,b)z-1 .

Simplitying the expressions in the prog-am, we get

(z,9) := (1, pos(A, b)2-1)

loop suggest z22pos(4,b), pos(4,b)dz+y
until »2-1
y = 32
if z+92pos(A,d) then 1z := 24y fi
repeat

suggest 22pos(4,b), pos(4,d)dz-1 .

Before we try to eliminate the nonprimitive function pos from the transformed
program, we attempt to verify the correctness of the program as is. The loop invariants

assert 22pos(4,0), pos(A,b)>z+y
along with the exit condition

until y2-]
clearly imply the desired output invariant

assert pos(A4,d)Sz, z<{pos(A,b)+1 .




—_

Furthermore, the loop-body path preserves the loop invariants for both cases of the
conditional.

The problem Is with the verification condition for the initialization path: the assignment

(z, y):s(l,pos(A,b)2-l) does not initialize the loop invariants. So we replace the
initialization with the new subgoal

assert usvoA[ul<d[v]), A[uleN, bebag(A[l1:n])
achieve 22pos(4,)), pos(4,b)>2+9 varying z,9 .

Since we are given that b appears within the segment A[l:n], we can achieve the
relation 22pos(4,5) by letting z=n. Now we can achieve pos(4,d)>z+y by insisting that
z+4y=0 , for which we initialize y to -z=-n.

The verification condition for termination is (3{eN)(-n/2"z-l) , l.e. by repeatedly
halving 3y, which has the Initial value -n, the exit test y2-1 must at some point become
true. This is indeed the case. Thus, all the verification conditions hold and the
transformed program is correct.

Finally, the conditional test z+y2pos(4,$) , that contains the nonprimitive function pos ,
may be replaced by A[z+9+1])% . That the two tests are squivalent, may be deduced from
the input specification

assert u<voA[ul<A[v]

and the definition of pos .

Our prograimn now looks like this:

(z,9) := (n,-n)

loop assert z2pos(4,)), pos(4,b)>z+y
until y2-1
y = 9/2
if Afzey+I]b then 2z := 249 fi
repeat

assert z2pos(A4,0), pos(A,d)2-1 .

If we transform the program variable y by 9 = -y and simplify, we get




PROGRAM MODIFICATION AND DEBUGGING &5
{ = ;
| P,: begin comment array-searck program | =
| assert usvoA[ulsA[v], AluleN, bebag(4[i:n]) |
| (2.9) = (n,n) | *
| loop assert z2pos(4,b), pos(4,b)>z-y | i
| until ysi | 4
| y = 92 l 5
| if Afz-9+1]d then z = z-y fi | .
| repeat |
| assert A[z)sb | 4
| end . | j
(1 ] 3
Note that transforming a variable that does not appear in the program specifications, such :
. as y, cannot affect what the program does, only how it does it.
L . Having found one satisfactory solution, let us return to the point where we compared
the desired goal
B achieve z22p0s(4,0), pos(4,b)+1>z varying z
. with the output invariants
assert z5va, Valz+e .
An alternative way to transform the relation < in the desired goal, into 2 and < into >,
without transforming the predicates themselves, would be to muitiply both sides of the
inequalities by -1 . We would thereby obtain the equivalent goal
achieve -z5-pos(A,b), -pos(A, b)-1{-z varying z .
Comparing the output invariant 2$va with the first conjunct of this goal, suggests the
i transformations
| ’ (z = -2, V@ = -pos(4,b)) .
X To obtain va = -pos(4,8) , we would like to use a = (-po:(/l.l,))2 . but since pos(4,b) is
. . positive, that would give va = pos(4,5), rather than -pos(4,b) as desired. As there is
i : no easy way out of this problem, we drop this possibility.
’ There Is another way: Just as usv is equivalent to u<v+| for integers u and v, for
o real numbers we can transform an expression of the form usv into one of form u<v+€,
‘L‘ m . where € is an arbitrarlly small real number. Similarly u<v is equivalent to u+¢<v. The
r €'s may then be eliminated from the resulting program. Thus, we may compare
‘!'\ assert 2(Va+€, Vali+e
»

' { e a1 3 -




with
achieve z<{pos(4,b)+1, pos(A,b)1+€ ,

which suggests the set of transformations

(a =» po:(A.b)z.z » z-1+¢,em 1) .

Py




TR B i e A TR KBR ST % L e es | e Da memn v i

PROGRAM MODIFICATION AND DEBUGGING 67

Applying these transformations to the square-root program ylelds

assert pos(4,0)%21, 150
(z-14€,9) = (1, pos(A, b)2-1)
loop assert z-1+€Spos(A4,d), pos(4,d)<z-1+€+y
until y<i
y = 9/2
I (2-14€+49)2<pos(A4.0)2 then z-1+¢ := z-le¢sy fi
repeat
assert 2z-1+€Spos(A,b), pos(A4,b)Kz-1+€+] .

The transformed conditional test (z-lweo’)"’spos(d,b)z , Mmay be simplified to
z-1+€+ySpos(4,0) , Le. z-l1+y<pos(4,b). To remove the nonprimitive function pos, we
replace the test with A[z+y]<b. Replacing the initialization and the illegal assignments,
we obtain the transformed program:

end .

i P,/: begin comment array-search program —i
| assert usvdA[ulsdlv), AluleN, debag(4[i:n])) |
| (z,9 := (1,n) |
| loop assert z<pos(4,b)+1, pos(4,b)+1Szey |
| until ys1 |
| y = 302 |
| if Afz+y]sd then z := 249 fi |
| repeat |
| assert A[z)=b |
l l

- |

-

Replacing the initialization In general requires rechecking the verification condition for

termination; in this case, (3{'6N)(ﬂl2"sl) must hold for the program to terminate, as
indeed it does.

: ‘ This array-search program may be given a more conventional appearance if we can
; replace z+y (the right bound of the search), which appears twice in the program, with just
; 9 . To effect z+y =» 3, we use the global transformation

)=z,
since z+(y-z)=y . Since the right-hand side of this transformation contains a variabie other
™. than the transformed variable y, the application of the transformation is a bit trickier:




wherever there is an assighment to z, even if y is not changed, we must consider what
happens to the transformed value of y. Thus, the conditional branch assignment z:=2+y
must be considered as though it were (z,9):=(z+y,9), which is transformed into
(z,9-2):%(z+(y-2), y-2) .

, Replacing all occurrences of % In the program with y-z, and using the appropriate
! achieve statements in place of the transformed assignments, we get:

achieve =1, y-z=n varying 1.,y
loop assert z<pos(A,b)+1, pos(4,b)+1<y
until y-z<1
’ achieve 9y-1=(y'-2)/2 varying 9y
if A[y)sb then achieve z=7'+(y'-7z'), y-z=y'-2’ varying 2,y fi
repeat
assert A[z]=b .

The Iinitialization subgoal

achieve =1, y-z=n varying 1,y
ylelds the assignment

(z,9) = (I,n+1) .
. Isolating y on one side of the equality in the subgoal
] achieve y-z=(y’-1)/2 varying y ,
yields

y = (z+49)/2 .
The conditional-branch subgoal

achieve z2=2'+(y'-7'), y-1sy’-2’ varying 1.9
ylelds the assignment

(z,9) = (9,29-2) .

The program, so far, Is:




e

S AR T W ey R e -l

PROGRAM MODIFICATION AND DEBUGGING 59

(z,9) := (1,n+1)

loop assert z<pos(A,b)+l, pos(4,b)+1<y
until y-z<l
y = (249)/2
if Aly)sd them (z2,9) := (y,29-2) fi
repeat

assert A[z)=b .

There are still a few more changes that may be made: By pushing the loop-body
assignment to y into the conditional statement, we get

it A[(z+9)/2)<b then (z,9) := ((2+49)/2,9) else y := (z49)/2 f£i .

Now, by eliminating the superfluous assignment 9:=y and introducing a temporary variable
¢t to contain the value (z+y)/2, we get

t = (249)/2
if A[t)sh then z =t else y =t fi .

TS RERAII?. OISR TSRO

Our final version of the array-search program is:

P begin comment conventional array-searck program

assert usvdA[ul)sA[v), A[uleN, bdebag(A[l:n])
(z,9) = (1,n+l)
loop assert z<pos(A,b)+1, pos(4,b)+1Sy
until y-z51
t = (249)/2
if Aft}sh then z = ¢ else 9 := ¢ fi

]

repeat
assert A[z]=
end .
¥
’ This chapter has lllustrated the uss of analogy to modify and debug programs. The
i ' next chapter shows how similar techniques may be used to abstract and Instantiate

programs.




CHAPTERIV

PROGRAM ABSTRACTION AND INSTANTIATION




Ve g -

‘-
~—

PROGRAM ABSTRACTION AND INSTANTIATION 61

1, INTRODUCTION

When confronted with a new task, a person will often notice a resemblance between
it and some previous accomplished task. Yo conserve effort, he is likely to adapt the
knowledge he learned on those occasions to the new problem at hand. After solving a
number of similar.problems, he might form a general paradigm for solving such problems by
supressing the inconsequential particulars of the individual instances. We term the

process of forming a general scheme from instances of the problem abstraction, and that of .

applying a general scheme to a particular problem instantiation.

In the programming case, we are given a set of concrete programs, presumably
related in some way, and would like to derive an abstract program schema. The programs
are assumed to be annotated with their input-output specifications and with sufficient
invariant assertions to demonstrate their correctness. The first step is to find an
abstraction of the set of specifications of all the programs. This yields an abstract
specification that may be instantiated to any of the given concrete specifications. For
each of the given specifications there corresponds an abstraction mapping that when
applied to the concrete specification will yield the abstract specification. That same
mapping, applied ‘to the given program, yields an abstract program schema. Conversely,
the Iinstantiation mapping that yields the concrete specifications of a program when
applied to the abstract specifications, wiil yield the corresponding concrete program when
applied to the abstract schema.

A schema, however, may not be applicable to all possible instantiations of its
speagcifications. In that case, the schema is accompanied by an input specification
containing conditions that must be satisfied by the instantiation to guarantee correctness.
These preconditions may be derived from the verification conditions which serve to bridge
the gap between the assertion language in which the specifications are stated and the
programming language in which the program is coded. In cases where the preconditions
are not satisfied by a particular instantiation, analysis of the unsatisfied conditions may
suggest modifications that will help satisfy the conditions.

To date, little research has been done on program abstraction. The STRIPS system
(Fikes, Hart and Nilsson [1872]) generalized the loop-free robot plans it generated; the
HACKER system (Sussman [1875]) "subroutinized" and generalized the “"blocks-world"
plans it generated, but was limited in this respect by its use of executions, rather than
verification proofs, to determine what program constants could be generalized. Recently,
Gerhart [Apr. 1976] and Gerhart and Yelowitz [1976] have also advocated the use of
program schemata as a powerful programming tool and have recommended the
hand-compitation of a handbook of such program schemata to aid human programmers.

iRt




N .
- o g amns - M 1 L dn b v ——

(See Yelowitz and Duncan [19877] for a detailed example of the use of schemata as an aid
in program verification and Misra [1978) for an approach to the specification of

schemata.)

in this chapter, we apply program-modification techniques to abstraction. To
generalize the common aspects of two programs P and Q and form a program schema,
we first find the set of transformations for modifying P into Q. Recall that to modify a
program P so as to obtain a program Q, we look for an analogy P « Q between the
specifications of P and Q. The analogy suggests a set of transformations that when
applied to the program P wiil yield a program satisfying the specifications of Q. Each
transformation is of the form e = f; all occurrences of ¢ in the program P are
transformed into f. For each such transformation, the corresponding abstraction
transformation for P is e=>v and for Q is f = v, where v is a new variable symbol.

We are tacitly assuming that the specifications of our programs are expressed
formailly and that this specification does express the desired behavior of the program.
This is not a trivial point; it iIs not uncommon for errors or omissions to be made in the
original specification of a program. Balzer, Goldman, and Wile [1977] have been
lnvesilgating the possibility of constructing a formal specification from informal and
incomplete specifications.

Another problem inherent in our use of analogy for program modification and
abstraction, is that the two specifications that are to be compared may have little
syntactically in common. When the specifications are not syntactically similar, it is
necessary to rephrase the given specifications in some equivalent manner that brings their
similarity to the fore. This is clearly a difficult problem. In our examples, we indicate what
may be done in some such cases; in general, some form of means-end analysis seems

appropriate.

In the next section, we present several examples of abstraction and instantiation.

&. EXAMPLES

Three examples follow: in the first, we derive a schema for linear search; the second
is an iterative implementation of a recursive definition; the third is a more general binary
search than the one we saw in Chapter H.




L3}

4 .
ke s MM e b ar o s J— — e -

PROGRAM ABSTRACTION AND INSTANTIATION 63

Example 1: Minimum/Maximum Schema.

Consider the following two programs:

P,. begin comment minimum-value program

assert neN
(z,y) := (4[0],0)
loop assert z<A4[0:y], yeM
until y=n
y = y+]
if Alyz then z := A[y] fi
repeat
assert z$A[0:n)
end

.

and

.

! begin comment maximum-position program

o

assert m,neZ, msn

(z,y9) = (n,n)

loop assert A[z]24[yin], yeZ
until y=m
y =91
if A{y]A[z] them z =y fi
repeat

assert A{z]2A[m:n]

end ,

P — C—— ——— —— — — — ——— —
e s o c—— v —— — — a——— watt— Y

where the construct plu:v] is shorthand for (V{)(us{'sv)p({), for any predicate p , i.e.,
# holds for all values { in the range [u:v]. The output specification of the first program
P s

'
assert z584[0:n] ;

it finds a value z smaller than any appearing in the array segment A[0:n]. The second
program Q finds the position z of a maximum element in the array segment A[m:n] ; its

output specification is
assert A{z]2A[m:n] .

(For simplicity we have not included the output specifications zeA[0:n] and msz&n of

Y S



64
P, and Q, , respectively.)

in the previous ‘chapter we saw how one may derive such programs one from the
other. The obvious analogy between the specifications of the two programs is that where
the specifications of P, have <, z, and 0, the specifications of Q have 2, A[z],

and m , respectively:

(se2,26 42,0 m) .




PROGRAM ABSTRACTION AND INSTANTIATION 66

Applying the transformations

(S= 2,22 A[2],0 » m)

to the output specification of P, transforms it into that of Q, . However, applying these
transformations to the program P, does not yield a pfogram satisfying the specifications
of Q . This is because the program P, makes use of properties of the constant < that
do not apply to 2 . Similarly, applying the transformations

@ =<, 29 pos(A,2),m = 0)

(where pos(A,z) is the position of the element z in the array A ) transforms the
specification of Q into that of P, , but does not yield a correct program. As we saw in

the last chapter, to obtain a correct program we must examine the verification conditions.

Consider the path initializing the loop in P, :

assert nelN
(z,9) := (4[0]},0)
suggest z5A4[0:y], yeN .

We are given that neMN, and must show that the loop invariants 2<4[0:y] and yeN hold
after initializing z to A[0] and 9 to 0. Thatls, to verify this path, we must have

neN > A[0]<A[0:0] A OeN .

Applying the transformations .
€ 32, zepA[2) , and O9nm

to this condition yields
neN > A[mJ]A[m:m] A meN .

The first consequent A[m)24[m:m] Is equivaient to A[m]24[m] and clearly holds; we are
left with the consequent meN . TAis path, the, will be correct if the condition meN is
satistied.

Next, we consider the loop-exit path

assert z54[0:], yeN
assert jy=n
\. suggest z35A4[0:n] ,

l.e. the loop Invariants plus the exit test »=n must imply the output specification
2SA[0:n] . The transformed condition is

»* S A[z2A[m:y] A yeN A y=n > A[z]24[m:n] ,




which clearly holds.

Finally, we consider the loop-body path

assert z54[0:y), yeN
assert y=n

y = 9+l
if Az then z := A[y] fi

suggest 254[0:9], yeN .
To verify this path, we must show that the loop invariant continues to hold if the exit test

is false and the loop body is executed, for both cases of the conditional statement. If
A[y+1)Kz before executing the path, then the then-branch of the loop,

assert z54[0:y], yeN
assert y=n

y =4l
assert A[y)<z

z = Aly)
suggest 25A4[0:y], yeN ,

is taken. In that case, we must have

2SA[0:9] A yeN A y=n A A[y+1)Xz > A[y+1]sA4[0:9+1] A y+leN .
Similarly, for the alternative path, we need

2SA[0:9] A yeN A yxn A —(A[y+1)Cz) > 25A4[0:9+1] A y+leN .
Applying the transformations to these two conditions gives C

Al2J2A[m:y] N yeN A y2n A A[p+1)CA[z) D> A[y+1)24[m:y+1] A y+leN
and

Alz]2A[m:y]) A yeN A g2n A ~(A[y+1KA[z])) > A[z)2A[m:y+1] A y+leN .

Consider the second of these two verification conditions. The consequent y+leN

clearly holds at the end of the loop body, since jyeN held before the path. The
consequent. A[z]2A4[m:y+1] Is partially implied by the conjunct A[z]24[m:y] appearing on
the left-hand side of the Implication; only A[z]J2A4[y+1] is not implied. So we look for
additional relations with which to complete the analogy. On the left-hand side we have the

conjunct  —(A[y+1])<A[z]) while the desired A[z]24[y+1] Is equivalent to
~(A[y+1]>4[z]) . This suggests the additional transformation




-

ww¢:‘&xméd&m%x.’. [ ST

PROGRAM ABSTRACTION AND INSTANTIATION 67

<= .
With this transformation the first verification condition hoids as well.

aa bt

Thus the four transformations

(S= 2,22 A[2],0>m, (= ))

will yield a correct program for finding the position of the maximum provided that the
condition meN Is satisfied. In the same manner, it may be shown that the transformations

R= S, 22 pos(4,2),m=0,>=<) ,
when applied to Q, , will yield a correct program for tinding the minimum.

Now that we have a complete analogy between the two tasks P, and Q,, viz.

(se2,20 42],0enCe)),

we attempt to generalize it to obtain an abstract program schema embodying the ;
underlying technique of the program. The generalization of the two predicates £ and 2 ]
is a new predicate variable « ; similarly, the generalization of < and > is 8. The
generalization of z and A[z] is z, since z may easily be transformed into A[z] (but
not vice versa); similarly, the generalization of the constant 0 and variable m is m . In
this manner, we obtain the abstraction mappings

(s2ae2z=22ecA2],0men(nfe)),

(So>a,0=msm(»f)

will generalize P, and

o e e

(= a,z= pos(4,2),> = )

will generalize Q, .

Applying the first set of transformations,

b (Soa,0mm=»p),

- : to the output specification of P, (or the second set to Q ) ylelds the abstract
Lo, ' specification

assert a(z, A[m:n)) .

. This, then, will be the output specification of the schema. To obtain the desired aschema,
_"- - we apply the transformations to P, yieliding




(2,9) = (A[m], m)
 loop assert af(z, A{miy]), yeN
until y=n
y = 9+l
if B(A[y).2) then z := A[y] fi
repeat
assert afz, A[m:n]) .

Since the ibstractlon transformations involve constants, we must examine the schema's
verification conditions. Those conditions that cannot be proved will remain as
preconditions for applicabllity of the schema.

The veritication condition for the initialization path is
a(A[m], A[m]) A meN ;
thus, if
meN
and
alu, u)
for all u , then that path is correct. The condition for the exit path is
alz, A[m:y]) A yeN A y=n > a(z, A{m:n)) ,
which is clearly the case. The remaining two conditions for the twd loop-body paths are
alz, A[m:y]) A yeN A B(A[y+1],2) > a(A[y+1], A[m:y+1]) A y+leN
and
a(z, A[m:9]) A yeN A —8(A[y+1),2) > a(z, A[m:y+1]) A y+leN .

The conjunct jy+leN clearly holds in both, and since we are already requiring
a(A4[y+1], A[y+1]) , that leaves

alz, Alm:3]) A yeN A B(A[y+1],2) > a(A[y+1], A[m:y])
and
a(z, A[m:y]) A yeN A —8(A(y+1]),2) > a(4[y+1],2) .

These conditions may be generalized (cf. Boyer and Moore [1876]) by replacing the
expressions A[m:y] and A[y+i] that appear on both sides of the implications with
universally qucntlﬂgd variables u and v, respectively. The generalized conditions are

az,u) A B(v,z) > aly,u)




L
l\ B
*
.
A

BB T R it M % s et i e — F T VU -

PROGRAM ABSTRACTION AND INSTANTIATION 69

and
a(z,u) A —8(,2) > a(z,v)

(the conjuncts yeN have been dropped as y does not at ali appear in the consequents).
Finally, there is a termination condition

(XeN) O+sfan ;
transforming it gives

(feN) msf=n ,
or equivalently, since meN,

neN A m<n .

The schema, with its preconditions listed in its input assertion, is

§,: begin comment minimym/maximum schema }
assert alu,u), alu, 2)A8(z,v)oalv,u), al(z,u)A\~8(v,1)>a(z,v), m, neN, m$n|
(z,9) := (A[m].m)
loop assert a(z, A{m:y]), yeN

until y=n
9 = 9+l
if B(A[y).z) then z := A[y] fi
repeat
assert a(z, A[m:n))
end .

[ 7
b s G S . ——— E——— — cp—

Any instantiation that satisfies the preconditions is guaranteed to yield a correct program.
Ciearly, the predicates a and £ that appear in the schema shouid be instantiated to
primitives available in the target language, otherwise they must be replaced by equivalent
predicates for the schema to yield an executable program.

In a similar manner, we could use Q, as the basis for the abstraction; we would obtain
a somewhat different schema with the same output specification.

Note that A may be considered to be & function as any other. Thus, this schema can
be instantiated to find the position or value z of the minimum or maximum of any function
over the domain of integers in the range [m:n]. For example, to tind the position z of
the minimum of the function f in the interval [0:m], l.e.




‘. ' ! ”-“.‘~ - - . . e
‘ !
70
d
( |
| R;: begin comment function minimum program |
| assert meN |
| achieve f(z)$f[0:m] varying 1z |
| end , |
[ | . J
we compare this goal with the abstract specification of the schema
assert a(z, A[m:n]) .
The following instantiation is obvious:
) (a=S,2f(2),A=f m=a0,n=>m) .
Applying this Instantiating to the preconditions
assert af(u,u), alz, u)A\8(v,2)oalv,u), alz,u)A-B(v,z)>a(z,v), m,neN, msn
' -, yields
assert usu, SuMB(v,z)ovsu, <uN—f(v,z)oz8v, 0,meN, 0sm .
} The first condition holds since < is reflexive; the last two follow from the input
: ) specification meN. That leaves z5uAB(v,z)ovsu and 25uA—8(v,z)>28v . The latter
\ suggesis completing the analogy by letting 8(v,z) = v>z; then the other condition
zSulAzdvovsu holds as well.
< Applying the complete instantiation mapping,
}
(a=s,2=2f(2),A=f m=>0,nm 8=,
to the schema yields
(f(2),9) := (£(0),0)
loop assert f(z)sf[0:y], yeN
until y=m
y = 9+l
‘ if fO)Xf(z) then f(2) = f(y) fi
repeat .
assert f(z)sf[O:m] .

’
1 !0 - Replacing the illegal assignments, we get the concrete, correct program




PROGRAM ABSTRACTION AND INSTANTIATION

ﬁ,: begin comment function minimum program
| assert meM '

| (z,9) = (0,0)

| loop assert f(z)sf[0:y), yeMN

| until y=m

| y = y+l

| if f(3)¢f(z) them z := y fi

| repeat

| assert f(z)sf[0:m]

| end .

L

- —— i AR — — —— — —— — — i

71

The same abstraction process would work were we given the two recursive programs

r
| P/(z, A[0:n]):
| begin comment recursive minimum-value program
| assert neN
if n=0 then z := A[0]
else P /'(z, A[O:n-1])
if A[n)<z then 1z = A[n] fi

I
I
I
| i
l
I
L

b o e c— — ——— — — — —— ]

assert 25A[0:n], neMN
end
and
—

| 'z, Alm:a)):

| begin comment recursive maximum-position program
| assert m,neZ, msn

| if m=n then z := n

| else Q/'(z, A[m+1:n))
| if A[m]A[x] them z (= m fi
| ¢

| assert A[z)24A[m:n), meN

| end .

L

- ]

Abstracting these two programs, we would obtain the schema




L3 ‘,
R = Wy oh i, - Tl Rt o elGn s el s e T i 8 e

72

i

$,'(z, A[m:n)):
begin comment recursive minimum/maximum scAema
assert a(u,u), a(z, u)AS(v, 2)>a(v,u), alz,u)A\~B(v,2)oa(z,v), m,neZ, ms
if n=m  then z := A[m]
else P /(z, A[m:n-1))
if B8(A[n),z) themn z := A[n] fi
fi
assert a(z, A[m:n]), neN
end .

S - R,

Example 2: Associative Recursicr. Schema.

Congider the two programs:

=

P, begin comment factorial program
assert aeN
(z,9) := (1,0)
loop assert ry!;z=a!
until y=0
(z,9) = (y2,9-1)
repeat
assert z=q!
end

o S i — — e — —— —
b i — ——— C—— — — - — — —

and




v e s

L
4
v
i
{
1
P
£
:
!
:
'
L
g
;
t
4
PR
i
2SS
r

PROGRAM ABSTRACTION AND INSTANTIATION 73

| Q: begin comment array-summation program
| assert neN

| (z,9) = (0,m)

| loop assert 2?,,A[{]+z-2?.,,d[{]

| until y=n+]

| (z,9) := (A[y)+z,9+1)

l repeat

i assert z-E?,mA[f]

| end .

L

S

Matching the two output specifications
assert z=a!
and
assert z=2?,md[f ]

suggests, as one possible analogy,

W e SgguA[f].a em) .

The two functions u! and 2?.,‘,{[{] generalize to a function variable f(u); the input
variables ¢ and m generalize to, say, a:

(! = f(u) & E?,uﬁ[f].a Saem) .
Thus, we get the abstract output specification

assert z=f(a) .

Both programs consist of a single loop; their respective loop invariants are

assert Yylez=g!

and
2" I

assert ‘-gyl[{’pz'lL{.mA[f] .

Matching the Invariants, after applying the transtormations already found, gives

J(y9)z=f(a) & f(y)+2=f(a) ,

xR M e .

LRRPP




74

and we derive the additional aspect of the analogy
‘D hes

Applying the corresponding transformations to the loop invariants we obtain the abstract
invariant

assert A(f(y), 2)=f(a) .
Now, we must consider the verification conditions. The initialization condition of P, is
all=a! ,

and applying the transformations we get

h(f(a), 1)=f(a) ;
on the other hand, applying the transformations to the initialization condition of Q, .

ZFemAB 1 0=Z0 p AL8)

gives
A(f(a), 0)=f(a) .
To unify the two, we add to the analogy

Iee0,
and obtain the abstract condition
h(f(a), e)=f(a) .
The loop-exit condition derived from P, is
h(f(9), 2)=f(a) A y=0 > z=f(a) ;
from Q,, we get
h(f(9), 2)=f(a) A y=n+l > z=f(a) .
With the abstraction

0=2>nen+] ,

we get
i h(f(9), 2)=f(a) A y=n > z=f(a) ,
‘ or, equivalently
' A(f(n), 2)=z .




B : B SN

A

;i.

i

PROGRAM ABSTRACTION AND INSTANTIATION 76

For the loop~body paths, we have the conditions
A(f(9), 2)=f(a) A y=n > Af(y-1), A(y, 2))=f(a)
and
h(f(9), 2)=f(a) A y=n D> A(f(y+1), A(4[y], 2))=f(a) ,

for P, and Q,, respectively. To unify y-1 > 9+1 and y & A[y], we need the additional
abstractions

+age-eied),
where ¢ is the identity function, Le. ¢(u)=u . This yields
A(f(y), 2)=f(a) A y=2n > A(f(g(y, 1)), A(i(y), 2))=f(a) ,
or equivalently

y=n > A(f(gly, 1)), Aliy), 20)=k(f(3), 2) .

The compiete abstraction is

(u!»f(u)eS?,uA[f].aea«m.-sheﬂl=n<=0.
O3nentl,+=dge-piecd) .

Applying it to Q, , and collecting all the preconditions, we derive the schema

S,: begin comment associative recursion schema
assert A(u,e)=u, A(f(n),z)=2, y=n>o4(f{gly, D), A(i(y), 2))=A(f(y). 2)
(z,9) = (e,a)
loop assert A(f(y), z)=f(a) .
until y=n
(z,9) = (Mi(y),2),809, 1))
repeat
assert z=f(a)
end .

(P . R G —— R CA— S— — — a—
b cmtts o E— S— w——— apate St — aw——

in this manner we have obtained a general schema for computing a function f(a) . It
applies to recursive functions f(x) such that f(n)=¢ is a unit of an associative and

commutative function A, and f(u)=A(f(g(u, 1)), i(x)) when y=n . The schema is similar to
one of the recursion-to-iteration transformations of Burstall and Darlington [1977].

To see how this schema may applied to another problem, consider the specifications

B
|
|
i

e




R, begin comment list-reversal program

assert ref
achieve z=reverse(r) varying :z
end ,

oo e c— A a——
e e a— — ——

where . is the set of all lists, and reverse(r) is a list containing the elements of r in
reverse order. Assume that we are also given two relevant facts about reverse :

fact reverse(()) = ()
and
fact reverse(u) = reverse(tail(u))-(head(u)) when u=() ,

where u-v concatenates the two lists u and v, hAead(u) is the.first element of the list
u , and fail(x) is a list of all but the first element, and () Is the empty list.

An initial comparison of the schema's output specification z=f(a) with the new
specification z=reverse(r) suggests the instantiation

[ = reverse .
instantiating the precondition
y=n > A(f(g(y, 1)), h(i(y), 2))=A(f(y), 2)
gives
y=n > A(reverse(g(y, 1)), A(i(y), 2))=h(reverse(y), 2) .

By the second of the above two facts, we have that reverse(y) may be replaced by
reverse(tail(y))+(head(y)) , provided that y is not the empty list (). This suggests
instantiating n = () to obtain

y=() > A(reverse(g(y, 1)), h(i(y), 2))=h(reverse(tail(y))-(head(y)), z) .

The function reverse appears on the two sides of the equality, so we try to generalize this
condition by replacing both occurrences of reverse with an arbitrary list u . To do that,
we must first unify reverse(g(y, 1)) with reverse(tail(y)) by instantiating g(u,v) = fail(u) .
We are left with the condition

h(u, A(i(y), 2))=A(u+(head(y)), 2) .

Similarly, we unify {(u) with (head(u)), the list containing just the first element of u,
obtaining

Alu, Ao, 2))=A(u-w,2) .
This matches with




PROGRAM ABSTRACTION AND INSTANTIATION 77

fact u-(vew)=(uv)w ,

by instantiating A = +, l.e. + is associative.

The instantiations we have found are
(f = reverse,n = (), g(u, v) = tail(u), i(u) = (head(u)), h = ) .

Applying them to the other preconditions

assert A(u,e)=u, A(f(n),z)=2
yields
assert ucezu, reverse(())z=z .

But reverse(())=() and ()-z=z, since the empty list () is an identity element of the
function Thus, the second condition holds; the first suggests letting ¢ = () .

L The completed instantiation is

(f = reverse,n = (), g(u, v) = tail(u), i(u) = (head(u)), h = +,e = ()) .

3 In all, we have derived the foliowing program
(. ]
. | R, begin comment list reversal program |
| assert re.f |
| z=0 |
| =7 | -
] loop assert reverse(y)-z=reverse(r) |
| until y=() |
| z = (head(y))ez |
| y = tail(y) |
| repeat |
| assert z=reverse(r) |
; | end . |
i L J
[}
SR
, Example 3: Binary-Search Schema.
oo~ - in the general overview, we saw how a binary-search schema was abstracted from
; c two programs, one for real division and the other for square roots. In this example, we
! . shall begin with the array-search program instead of the square-root one; a more general
4 ? S schema wili result.
!
S
- e ~




BRI i dlad
L Y N

+ e+ it et Mo D TR o T e KOG st S SO Ll S S At

78

Consider the following two annotated binary-search programs, P, and Q,:

P, begin comment real-division program
assert 0<a<b, 0<e
(z,9) := (0, 1)
loop assert bez<a, a<b«(z+y)
until y<e
9 = 9/2
if be(z+9)<a then z := 24y fi
repeat
assert b-z5a, a<b(z+e)
end

(o S e — — — ——— — — —— —
D G e S S CEE— S— D SRS S e el

and

Q.. begin comment array-search program i
assert us<vdA[ulsd[v], A[u)eN, bebag(A[i:n]) |
(z,9) = (n,n) |
loop assert z2pos(A,b), pos(A,bd)>z-y |

until < |

y = 9/2 |

if A[z-9+1]>b then z := z-y fi |
repeat |
assert A[z]<h, b<A[z+1] |
end . |
—

o — — — ——— — — ——— ——— Gt y—— —

Recall that when an index u of an array A is not an integer, the intended element is
Ainj-
The analogy between the specification of P, ,

assert be25a, adlbe(z+e)

and the specification of 0, , t

assert A[z]<b, b<A[z+1] , .

(uvsw o wv)Su,a & A, uvw & Ku[w],e e 1) .

The corresponding abstraction mappings are

Al




PROGRAM ABSTRACTION AND INSTANTIATION 79

(uevsw = a(u, v, w) « wv]su,a =2 ¢ & 4,
uvow = B(u,v,w) & u[w], e e = 1) .

Applying these transformations to P, yields the schema

(z,9) := (0,1)
loop assert a(b,z,8), B(a,b,z+y)
until y<e
y = 32
if a(b,z+y,6) then z := z+4y fi
repeat
assert afb,z,a), B(a,d,z+e) .
In the same manner as in previous examples, we derive the precondition
B(a,b,u) A usv > B(a,d,v)
for the loop-exit path, and
—a(b, u,a) > B(a,b,u)

for the loop-body path.

The verification condition for the loop-initiaiization path is
a(b,0,a) A Bla,b,1) .
However, if we were to abstract 0, instead, we would get an initielization condition
a(b,n,a) A B(a,b,0) .

This suggests generalizing the constant Oin P, and n in Q. to j and | and 0 to k.
In this manner, we would obtain the initialization

(z,9) = (j, k)
with the unified preconditions
ab,f,a) A Ba,b, k) .

Alternatively, we can just preface the loop with an unachieved subgoal

achieve a(b,z,a), B(a,b,2+y) varying 2,y ,

stating that the loop invariant must be achieved before entering the loop.
Adopting the second option we get the schema




80

|rS,: begin comment binary-search schema }
| assert f(a,b, u)Ausvofi(a, b, v), —aldb,u,a)>8(a,b,u) |
| achieve a(b,z,a), 8(a,b,z+y) varying z,y |
| loop assert alb,z,a), B(a,d,z+y) |
| until y<e |
| y = 92 |
| if a(b,z+y,a) then z = 24y fi |
| repeat |
| assert aflb,z,a), B(a,b,z+e) |
| end . |
i )

It is a general program schema for a binary search within a tolerance with the abstract
output specification

assert alb,z,a), B(a,b,z+e) .

To illustrate how this search schema may be used, we consider a variation on the
square-root program:

f
| R, begin comment uvarian! square-roof program
| assert 0<d, I<c

| achieve z-d<vc, Vc<z varying =z

|

snd ,

that is, the result z may only be greater than the square-root of ¢ by less than the given
d . We would like to Instantiate the binary-search schema to yield such a square-root
program.

in order to match this output specification with that of our schema:
assert a(b,z,a), B(a,b,z+e) ,
we let the constant ¢ be the constant expression -d and obtain the transformations:
(a=c,ald,z,u) » JYusz, B(u,d,v) » v{Vu,e » -d) .
The preconditions
assert f(a,b, u)Ausvof(as,b,v), —a(d,u,a)>8(a,b, u)
instantiate to

assert ulveAusvoudve, =(vesu)oulve .




PROGRAM ABSTRACTION AND INSTANTIATION 81

The second condition holds, while the first does not. To get the first condition to hold, we
need u2v, rather than usy , suggesting the additional transformation < =» 2.

To satisfy the initialization condition, we need to
achieve a(b,z,a), B(s,b,z+y) varying 2.y ,
{.e.
achieve Vi<z, 2+49¢VC varying 1,y .

We note that since 1<c, we have vi<c and c+(l-¢)=1<ve. Thus, both conjuncts hold
when we let:

(z,9) := (c,1-¢) .

(An alternative would have been to take - for y, since c+(-c)=0<vc.)

The instantiated schema is:

assert 0<d, 1<c
(z,9) := (c, 1-c)
loop assert i<z, z+9<VE
until y2-d
y = 9/2
if Vc<z+y then z := 74y fi
repeat
assert c<z, z-d{vc .

However, since a Iinvoives the square-root function itself, the conditional test is not

primitive and must be replaced. It can be replaced by c's(z{y)2 since ¢ and z+y are
nonnegative ( 0<sc follows from the input specification; the relation 0<z+y may be shown
to be a giobal invariant). Thus, we have:




4] ! e . -
. PSS S [
_!
-
a2
!
( 1
| Ry begin comment uvariant square-root program |
| assert 04d, I<c |
| @y = €10 I
| loup assert i<z, z+9<vE |
| until y2-d |
I y =32 |
| If c<(z¢9)2 them z = 1oy fi | P
f | repeat | i
2R | assert <z, z2-d<vc | :
| end . I !
L J
:
;
L3 ) '
, In the last two chapters, we have explored modification and abstraction techniques;
in the next two chapters we develop helpful tools for synthesizing and annotating
programs.
'
I
i
A T




CHAPTERV

PROGRAM SYNTHESIS




84

i. INTRODUCTION

Recently, researchers have tried to gain insight into the haphazard art of programming.
This has led to the development of “structured programming” which has been defined by
Hoare as "the task of organizing one's thought in a way that leads, in a reasonable time, to
an understandable expression of a computing task®. One of the guidelines of structured
programming is that “one should try to develop a program and its proof of correctness
hand-in-hand" (Gries [1974]). Much has been written on the subject, including the works
of Dijkstra [1968,1076], Dahi, Dijkstra, and Hoare [1972], Wirth [19873,1874], Conway
and Gries [1973], and others.

The idea is to construct the desired program step by step, beginning with the given
input and output specifications. In each step the current goal is solved, transformed into
another goal, or reduced to simpler subgoals. Each stage is correct if its predecessor is,
thereby guaranteeing the correctness of the final program. Our purpose in this chapter is
to formalize some of the strategies of structured programming, thereby contributing to its
automation. As we have seen,'such methods are needed to complement the techniques of
program modification and instantiation. '

One of the major hurdles in automatic structured programming lies in the formation of
loops. Recent synthesis systems have variously deait with this problem. Buchanan and
Luckham [1974] require the user to supply the skeleton of the loop, and the system fills in
the detalls. Sussman [1975] described his HACKER system that creates iterative and
recursive loops with no guarantee of correctness. Darlington [1976), Manna and
Waldinger [1976,1977), and others have described a technique of recursion formation and
the need to sometimes strengthen the original specifications for that purpose. The system
described in Green [1976] assumes extensive a priorl programming knowledge, such as an
experienced programmer would have. Duran [1975] investigated the use of loop
invariants In the synthesis of programs, along lines similar to our iterative loop strategy.
For a survey of these and other approaches to automatic program synthesis, see Biermann
[1876].

The next section contains an overview of the steps involved in the synthesis of a
simple program. In Section 3, we Introduce some programming rules; in the fourth section,
the rules are employed in the syntheses of several programs. A final section deals with
the problem of extending a program to achieve additional goals. When synthesizing code
to extend a program, care must be taken to ensure that the original specifications
continue to be satisfied.




PROGRAM SYNTHESIS 85

2. OVERVIEW ;

In this overview, we informally describe the synthesis of a simple program; the steps f
in the strategies themselves are explained in the next section. )

Program synthesis begins with an initial goal of the form

P: begin comment desired program
assert input specification
achieve output specification varying output variables

end ;

b e

?
The task is to expand the goal into a segment of code whose execution will terminate with !
the relation expressed in the output specification holding between the variables. Bv !
varying output variables ,

we Indicate that only those varlables may be set by the program; other variables
appearing in the specifications are input variables. The statement

assert input specification
specifies the set of values of the input variables for which the synthesized program is
expected to work.

ey

2 .
: From these specifications, an annotated program of the form

assert input specification

purpose output specification
code to achieve specifications

assert output specification

is constructed. When control reaches the end of the program, the variables must satisfy
the output specification. The code must be primitive, in other words, it may not itself
contain achieve statements or nonprimitive operators. Thus, a program synthesizer
"compiles" the high-level achieve statements into lower-level "code”. The purpose
statement is a comment expressing what it is that the foliowing code was intended to

]
TTRPELLN WP T LT A B L e e

’ achieve,
.
; It is usually not possible to generate code directly from the initial goal. Rather, at
| ' each stage of the construction, a current goal is replaced by one or more new, and
’ R hopefully more readily achievable, subgoals, that if and when achieved will imply the
\ L desired relation. Each step must preserve correctness, i.e. satisfying the new goals must




yield a correct program satisfying the current goal. Thus, the final program is guaranteed
to satisfy the original specifications.

in general, at each stage in the synthesis of a program there is more than one
unachieved subgoal, and for each subgoal there may be a number of possible
transformations that can be applied. Whenever a given choice turns out to be
unsuccessful, a different possibility must be tried. We do not, however, address here the
important issue of how to guess which may be the best choice at any particular point.
Kant [1977] describes a system that guides the cholces made by a synthesis system
based upon an analysis of expected time and space requirements. Annotation techniques
facllitate such analyses and could be employed in conjunction with the synthesis.

Consider the goal

P begin comment gcd program
assert aeN, beN+|
achieve z=gcd(a,b) varying z
end

[ ——— —
e o v e aed

(where N+] is the set of positive integers), aimed at constructing a program that sets
the variable z to the greatest common divisor (ged) of two nonnegative integers ¢ and
b .

Wete gcd a primitive function of the target language, then this goal could be
achieved by a simple assignment statement:
z = ged(a,d) .

But having no primitive ged function available, the goal must be achieved in stages
utilizing domain-specific knowledge about ged. Furthermore, we assume that the set
constructor {. ..} and max function are not primitive, or eise we could use the
definition

fact gcd(u,v)=max{weN:wjuAwp} when u,vel
(where the predicate wju means that w divides u evenly) to assign
z = max{weN:wlaAwp} .

Note aiso, that were It not specified that only z may be varied, the goal could be
achieved by the assignments

(2,8) = (b,0)

since a=0 and z=b Imply z=gcd(s,d).




Semrae -

-

RIS PR A

PROGRAM SYNTHESIS

Not having any way to directly
achieve z=gcd(e,b) varying z ,

the first step in the synthesis might be to introduce program variables whose values may
be manipulated by the program so as to achieve the goal. To this end, the goal may be
replaced by the conjunction of two subgoals

‘achieve z=gcd(s,?), u=gcd(s,t)ou=ged(a,b) varying z,s,¢ .

The second subgoal u=gcd(s, t)ou=gcd(a, b) requires that for any value u , if ¥ is equal to

ged(s,t) — for some values of the new program variables s and ¢ — then it is also equal
to the desired value gcd(a,d) . In particular, if the variable z has the value - gcd(s,t) at
the same time as the second subgoal holds, then the original goal z=ged(a,d) Is satistied.
Since the Implication u=ged(s, t)ou=gcd(a,b) must hold for all values of u, it is equivalent
to the simpler ged(s, t)=gcd(a, b) . Our current goal, then, is

achieve z=ged(s,t), ged(s,t)=gcd(a,d) varying z,s,t .

At this point, we would like to simplify this goal, which is composed of two conjuncts,
by splitting it into two consecutive nonconjunctive subgoals. Choosing to first achieve
ged(s, t)=gcd(a,b) and then z=ged(s,t) , we get the two subgoals

achieve gcd(s, t)=gcd(a,b) varying s,t
achieve z=gcd(s,t) varying z2,s,t ,

each of which is simpler than the conjunctive goal. However, in so doing, one must ensure
that achieving the second subgoal will not "clobber® what was accomplished by the first

subgoal. This point will be takeh up later.

To achieve the first subgoal
achieve gcd(s,t)=gcd(a,b) varying s,t ,
it suffices to
achieve (s,¢)=(a,b) varying s,¢ ;
to achieve the latter, we can assign
(s.0) = (a,b) .
Matching z=gcd(s,t) with the domain-specific knowledge
fact gecd(0,u)=u when ueN+| ,

stating that if u is positive, then the ged of u and 0 is u, we get
(5= 0,¢t=u,zmou),le z=ged(s,t) if s=0 and z=teN+l. TAus, the remaining subgoal

achieve z=gcd(s,¢) varying 1z,s,¢




may be replaced by the sufficient

achieve z=t, teN+l, s=0 varying z,s5,¢ .

Again, we may split the conjunctive goal into two consecutive subjoals

achieve =0, teN+]l varying s,¢
achieve 2=t varying z .

Notice that we have allowed the first subgoal to vary s and ¢, but not z, while the
second goal may vary only z, leaving the values of s and ¢ unchanged. Achieving the
second goal, say by assigning

z =t ,

will therefore leave s=0 and teN+] once those relations have been achieved by the
preceding subgoal.

t it remains to
' achieve s5=0, teN+l varying s,t .

To achieve s=0, we do not want to simply assign s5:=0, since this will undo the previous
assignment s:=¢ ; on the other hand, we must vary the value of s since a is not
necessarily 0. To resolve this dilemma, recall that we set (s,7)=(a,d) only in order to
achieve the relation gcd(s,t)=gcd(a,d) . So, if we can “protect” this latter relation while
achleving s=0, rather than protect the stronger (s, )=(a,}), then when s=0 is achieved,
thé desired relation gcd(s, ()=ged(a,b) will stil hold.. The protected relation
ged(s, t)=ged(a,b) is termed an invariant assertion; It is associated with a specific point in
the program segment, and expresses that part of the goal that has already been computed
whenever execution reaches that point. (it is the inductive assertion used in Floyd's
[1967] method of proving program correctness.)

An alternative, but equivalent, way of viewing this solution is as follows: The original
purpose In having introduced the variables s and ¢ and set (s,¢)=(a, ) was to enable us
to compute z=gcd(s,t) rather than z=gcd(e,b). So, we must make sure that, though the
value of s is changed, it still suffices to achieve z=gcd(s,?), l.e., achieving z=ged(s,t) for
the new value of s will imply z=gcd(s,t) for the old value as well. The relation z=gcd(s, ¢)

’ is then called an invariant purpose; it expresses the uitimate goal throughout the
i computation. (It is the assertion used for subgoal induction, see Manna [1971] and Morris
® - and Wegbreit [1977]).

[ To achieve s=0 while protecting the invariant relations, we construct a loop of the
A N form




I . b et e e e L L Rt e e n e o

e Bt

PROGRAM SYNTHESIS 89

loop assert gcd(s,t)=gcd(a,b)
purpose z=ged(s, )
until =0 1
approach =0 varying s,! 1
repeat . 3

The statement

assert gcd(s, t)=gcd(a, ) ;

contains the invariant assertion of the loop; the statement
. purpose z=gcd(s,?)
contains the invariant purpose. For a relation to be an invariant assertion of a loop, it must
hold upon entering the loop, and assuming that it held before executing the loop body, then §
it must hold after. For a relation to be an invariant purpose of a loop, it must be the goal ;
L ¢ upon entering the loop, and assuming that it is the goal before executing the loop body,
L‘ o then it must be the goal after. b
The loop-body statement
‘ approach s=0 varying s,!
J expresses the desire to make definite progress towards the goal s=0 with each loop
iteration. Since s is set to the nonnegative integer a before entering the loop, it follows
that the loop decreases the value of s. Thus, we can ensure loop termination by
monotonically decreasing the integer 3, while s remains nonnegative; the loop-body
subgoal, then, is
achieve seN, s¢' varying s,! ,
where s’ denotes the value of s prior to this statement.
The other conjunct of the subgoal teN+] is true upon entering the loop, when
t=beN+1 , and must be kept true by the loop. Within the loop, we also wish to protect the
invariant  assertion  gcd(s,t)=gcd(a,b) and invariant purpose  z=gcd(s,t) . If
ged(s’, t')=ged(a, b) holds for the prior vaiues of s and ¢, then ged(s,t)=gcd(a,d) will hold
. ‘ for the new values, provided that ged(s, f)=gecd(s’,¢') . This relation also maintains the goal
o ; z=ged(s,t) : Mt ged(s,t)=ged(s’,1’) and the goal z=ged(s,t) can be achieved, then
S PO z=gcd(s’, ') will be achieved as well. The complete loop-body subgoal is
A achieve seN, s<s’, teN+l, ged(s,t)=gcd(s’,t') varying s.t .
+ P S Matching the information about the domain expressed in the
N 14
fact ged(rem(u,v),v)=gcd(v,u) when ueN, yeN+|
} .
1,} .




80

with the conjunct ged(s, t)=ged(s’,t’) suggests letting t=s' and s=rem(t’,s’) , leaving the
goal

achieve seMN, s<s', teN+1, t=s', s=rem(t',s’), t'eN varying s, .
Since s=rem(t’,s’) and
fact rem(u,v)<v, rem(u,v)eN when ueN, veN+| ,

the conjuncts seN and s<s' hold, provided that f'eN and s'eN+1 . Recall that we are
assuming that the invariants t‘eN+l and s'eN are true. For the loop-body to be
executed, the exit test s=0 must have been false, i.e. s'#0 ; therefore, s'eN+1 . Finally,
we are left with the goal

achieve (=5s', s=rem(s’,t’) varying s,t .,
suggesting the multiple assignment

(s,0) := (rem{s,0),s) .

Since for each step in the construction, achieving the new subgoals satisfies the
previous goal, the final program,

i P begin comment gcd program

| assert g, beN, a=0Vb=20

| purpose z=ged(a,b)

| purpose ged(s, t)=ged(a, b)
| .0 = (a,b)

| assert gcd(s, t)=gcd(a, b)

| -loop assert gcd(s, f)=gcd(a,b)
| purpose z=gcd(s,?)

| until =0

| (s,1) = (rem(s,0),$)

| repeat

| z =t

| assert z=gcd(a,b)

| end ,

L

e T . C— S I t— S — —— —— — Sp— ——  S—

is guaranteed to achieve the Initial specifications

assert a,beN
achieve z=gcd(e,b) varying z .

In the next section, we formalize our program-synthesis strategies.




ALk . i

A A Sl i

91

3. STRATEGIES

in this section we present some programming strategies; each transforms a given goal
into code containing simpier subgoails.

I. Strengthening Rule
The strengthening rule is used to replace a goal by another sufficient goal:
achieve a(u) varying u

fact a(u) when B(u)

purpose a(u)
achieve B(u) varying u
assert aflu) ,

This rule states that if it is known that achieving 8 will imply that the desired relation a
holds, then replace the goal

achieve a(u) varying u
with the "stronger”, but presumably simpler, subgoal
achieve B(u) varying u .
For example, the goal
achieve z=gcd(x,y) varying x,9,2
may be strengthened to
achieve x=0, z=y varying x,9,2z ,
since the
fact ged(0, u)=u
tells us that z=gcd(x,y) when x=0 and z=y.

The goal 8 may also introduce new variables v, yielding

achieve A(u,v) varying u,v .

The values of the new program variables are set by the code generated from this subgoal,
but 8 must imply a for any values of v. Note that this means that § need only be




AD=A0B82 359 WEIZMANN INST OF SCIENCE REHOVOTH (ISRAEL) DEPT OF =~ETC F/6 9/2
SYNTHESIZED STRUCTURED PROGRAMMING. (U)
JAN 80 Z MANNA AFOSR=-78-3483
UNCLASSIFIED RADC ~TR=79-326




s £ i
== = I g2
=t
L. 4

i ==
flig

ML2s e e
= = =

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A




Re

- -
o ARl ol L vy e

achieved for some values of 7 ; their final values are unimportant as they are not output
~ variables. Some generally useful transformations of this sort are expressed by the
following facts:

fact p(i) when p(?), p()op(u) ,
fact p(u) when p(v), u=v ,
fact p(f(u)) when p(f(), f(u)=f(¥) ,

and ,
fact p(f(u)) when p(v), v=f(u) . :
For example, the goal
achieve 2=gcd(s,b) varying 2
may be transformed into
achieve z=gecd(s,t), (s,t)=(a,d) varying z,s,1 .
or to
achieve z=gcd(s.t), ged(s,t)=gecd(a,b) varying z,s.t

In any case, z=gcd(a,b) Is implied for any values of s and ¢.

) A special case of this rule is the replacement of a goal by a logically equivalent, but
simpler, goal. For exampie

achieve x=0, x=y varying x.,y
may be replaced by the equivalent

achieve x=0, 9=0 varying x.,9 .

2. Assignment Rule

Assignment statements are formed by the following rule

achieve y=f (%), 9=f(%X), ..., 9,=f(¥) varying 3.9, ... .9, - -
' purpose y=f(X), 92f,(¥), ..., 3., (%)

!- : Op 9y - - 3) = FELLE - o S

! assert ,l:f 1(5)' ,Q'f z(g)' et ,'.f n(-x.) ’

- N Yl e . - e . e - -




PROGRAM SYNTHESIS
where the variables 3.y, . ...y, do not appear in X, and f.f,. ....f, are :
composed of only primitive operations. For exampie, the goal q

achieve x=0, y=0 varying x,y
may be achieved by
(x,9) = (0,0) .

This rule suggests that one first attempt to isolate variables on one side of an equality, :
@.g. a goa! of the form

achieve g(y)=f(x) varying 9

should be transformed into
achieve =g (f(x)) varying y ,

where. g~ is the inverse (assuming that it exists) of the function g .

3. Conditional Rule

Conditional statements are formed in the following manner:

. purpose a(k)
achieve fB(u), Y(k) varying u
purpose af(u)
if A(u) then achieve 7Y(i) protecting B(i) varying u
else assert —¥(u)

achieve a(u) varying u
fi,

T

' provided that the relation 8 is computable, L.e. when § Is composed of primitive
! functions and predicates. In other words, one way of achieving £ is to test if it holds:
when It does, protect thq} relation while achieving the remainder; when it does not hold,
try to use that fact while achieving the original goal.

For example, to solve the conjunctive goal

Rl

purpose 2sgcd(x,9)
achieve x=0, 7=y varying z ,

we may test if one conjunct aiready holds:

T T T
4
N

——
v




b ie el

purpose z=gcd(x,9)
if x=0 then achieve 2=y varying
else assert x»0
achieve z=gcd(x,y) varying :

fl.

4. Splitting Strategies

Suppose we have a conjunctive goal of the form
achieve B(v), 7Y(u,v) varying u,v ,

the u variables appearing only in 7. We would like to split this goal into two
consecutive subgoals, first achieving 8 and then 7 :

purpose S(), 7(u,v)
achieve fS(v) varying v
achieve 7(u,v) varying u,v
assert B(v), Y(u,v) .

Unfortunately, things are not as simple as that. As pointed out earlier, the problem is that
in achieving the second goal 7, we may unwittingly destroy the relationship 8 that has
already been achieved. We must, therefore, somehow maintain 8 while achieving ¥ . We
consider three "protection” strategies for achieving the second subgoal, 7Y, while
protecting the first, 8, from being undone.

©® Disjoint Goal Rule. if in achieving the second subgoal ¥, the value of ¥ need not
be set, then clearly the two subgoals are independent. We have then the consecutive
goals

achieve B(v), 7(u,v) varying u,v
purpose B(v), V(u,v)
achieve £(v) varying v
achieve 7(u,v) varying i
assert (), Y(u,v) .

For example, the two conjuncts of the goal

achieve x=0, =9 varying x,9,12




HY TGS C AN TR W SO AL SVt = o

\—_—
1]
wg

PROGRAM SYNTHESIS 95

contain different variables. We can therefore split it into

purpose x=0, 2=y
achieve x=0 varying x
achieve 2=y varying 3,2
assert x=0, z=y .

® Protection Rule. Another strategy Is to insist that after each stage executed in
achieving 7, 8§ remains true for the current values of the variables:

achieve $(v), Y(u,v) varying u,v
purpose f(v), Y(i,v)
achieve f(v) varying »
achieve 7(u,v) protecting S(v) varying u,v

assert S(v), Y(u,v) .

One way to protect a relation is to insist that its variables do not change value, l.e. v=7',
as In the disjoint goal rule above; another method is the formation of a loop, with the
protected relation serving as the invariant assertion, as we shall see.

For example,
. achieve z=gcd(s,t), ged(s,t)=ged(a,d) varying z,s,t

may be broken into

achieve gcd(s,t)=gcd(a,d) varying s,t¢
achieve 2=gcd(s,t) protecting gcd(s,t)=gcd(a,d) varying z,s,¢ .

® Preservation Rule. Assume that the program variables v are not output variables,
rather they were introduced to facilitate achieving some purpose a(x). Then the final
vaiues of 7 are unimportant, and one need only achieve 8 and 7Y for some arbitrary
values of 7. As we saw, the protection rule achieves both 8§ and ¥ for the final values
of v ; while in the disjoint rule, the values of 7 are the same after achieving ¥ as after
achieving 8 . A third possibility is that after achieving § for some v, one achleve Y for
those same values of v though the current value of ¥ may be changed in the process.
The only requirement is that achieving ¥ for the new vaiues of v aiso implies Y for the
previous values of 7. (Equivalently, if 7Y was the goal for the old v, then Y remains
the goal after this stage — for the new v .) Thus, by achieving 7 , we end up with 8 and

% hoiding for the oid values of v .

n e

. G g




The rule is i R

purpose a(u)

achieve B(v), Y(u,v) varying u,v
purpose a(u)

achieve f(v) varying v

achieve 7(u,v) preserving 7Y(i,v) for v varying u,v
assert a(u) .

The second goal Y may then be transformed further. in particular, this rule can lead to a
loop, with the preserved relation serving as the invariant purpose of the loop. We require
that 7Y remain the goal for current values of the varlables throughout the achievement of

Y itself.

For example,
L achieve 1=gcd(s,t), (s,0)=(a,b) varying z,s.¢
! may be broken into

achieve (s,0)=(a,d) varying s.¢
achieve z=gcd(s,t) preserving z=gcd(s,?) for s,t varying z,s,t .

. The second subgoal may then be strengthened to
achieve s=0, 2=t preserving z=gcd(s,t) for s,t varying z,s,¢ .
To summarize the difference between the last two rules, we may say that the

protection rule applies to goals already achieved, while the preservation rule applies to goals to
be achieved.

5. Loop Rules

The loop rules allow a given goal to be achieved step by step. We present two rules
for forming iterative loops and a rule for guaranteeing their termination. We also inciude a
recursion-formation rule.




PROGRAM SYNTHESIS o7

® Forward Iterative Loop Rule. Given a goal of the form
achieve § protecting a varying u '

(preceding code has achieved a and we wish to keep a true while achieving £ ), the
following rule will generate an iterative loop:

achieve f(u) protecting a(u) varying u
purpose B(u), a(u)
loop  assert afiz) ,
until S(u) :
approach #(u) protecting a(u) varying u k
repeat
assert B(u), a(u)

This is permissible provided the exit test 8 is primitive.

The statement

assert afu)

is the invariant assertion of the loop stating that a is true whenever execution reaches
the beginning of the loop. It is invariant, since it is given that a is true when the loop is
first entered (and only needs to be protected), and the loop-body subgoal

approach B(u) protecting a(u) varying u

will ensure that & remains true after each iteration. The loop will terminate when the exit
condition 8 becomes true; at that point both the invariant a and the test 8 must hoid.
In order to guarantee that loop execution will indeed terminate, we must make definite
progress towards {3 ; this is the meaning of "approach®.

For example, the goal
achieve s=0 protecting gcd(s,()=ged(a,d) varying z,s5.¢
suggests the loop

purpose =0, gcd(s, t)=ged(a, b)

I P NS oo - - e ey

loop assert ged(s, )=ged(a,d)
N . until s=0
; approach =0 protecting ged(s,()eged(s,d) varying s,¢
repeat
L assert =0, gcd(s,t)=ged(a,d) .
= 2

The new goal




approach s=0

can be achieved by decreasing the value of s, provided that s was nonnegative upon
loop entry. The invariant must be protected in the process.

® Backward Iterative Loop Rule. For the case where we wish to achieve a relation 8
while preserving an ultimate goal a , we have

achieve §(u,v) preserving a(u,v) for v varying u,v

purpose B(u,v)
loop purpose a(u,v)
until B(u,v)
approach S(u,v) preserving a(u,v) for v varying u,
repeat
assert B(%,v) .

©

. As with the forward loop, this is permissible only it § Is computable.

The purpose aof the loop is to achieve the exit relation 8 while preserving the
uitimate purpose a. The loop will terminate when the exit condition 8 becomes true; at
that point, the fact that 8 hoids may be used to heip achieve the purpose a. The

. statement

T ey 4 e o

purpose a(u,v)

contains the invariant purpose of the loop and states that whenever execution reaches
‘ the beginning of the loop, what remains to be computed is a , for the current values of the
1 4 varlables u and 7. Upon exiting the iloop, the goal is a, and a is the goal whenever
the loop-body subgoal

approach f(i,v) preserving a(u,v) for v varying u,7

ittt e it - Lo i

is executed.

For example, the goal
achieve s=0, =t preserving z=gcd(s,t) for s,t varying z,s,7 ,
may be split into disjoint goals

]
L achieve ;=0 preserving z=gcd(s,t) for s,t varying s,
assert =0

purpose 2=/
.- achieve 2= preserving z=gcd(s,f) for s,t varying z .




T AT T — e
R

PROGRAM SYNTHESIS 99

By assigning z:=f, the subgoal z=t is achieved as is the preserved goal z=gcd(s,?) , since
s=0 . Letting a be z=ged(s,?) and 8 be s=0, the remaining subgoal

achieve s=0 preserving z=gcd(s,t) for s,1 varying s,t
may be transformed into the loop

purpose s=0
loop purpose z=ged(s,?)
until s=0
approach s=0 preserving z1=gcd(s,f) for s,t varying s,¢
repeat
assert =0 .

Within the loop, the purpose z=gcd(s,!) must be maintained while making progress towards
=0 .

® Termination Rule, Assume that we are given a loop-body subgoal
approach f(u) protecting a(i) varying u .

Clearly in order to make progress towards S, one of the variables u must be changed,
le. u=u'. This is not however sufficient to ensure that S will ever be attained. What
we need is the notion of well-founded set: a well-founded set (W,>) consists of a set of
elements W and an ordering > defined on the elements, such that there can be no
infinite deécending sequences of elements w >wy>... . So, if throughout execution ot the
loop we keep ueW , for some well-founded set (W, >) ,.and insist that with each iteration
% is reduced in that ordering, l.e. ¥’>u , then termination is guaranteed. in particular, we
must have % u, , where &, denotes the value of i upon entering the loop and i,

denotes the value upon exiting. (To determine this, we may use whatever tacts are known
about &, and i, ,e.9. a(ii), a(ii,),end B(i,) .)

We have, for forward loops, the termination rule

assert u,u,eW, udu,
approach f(u) protecting a(u) varying

assert —¥(u)
achieve u'>u protecting a(u), ueW varying u

and similarly for backward loops




100

assert u,ug eW, u i,

approach fB(u) preserving a(u) for v varying u
assert —¥(x)

achieve u'>u preserving a(k), ucW for v varying u , J

where (W, >) Is some well-founded set.

The well-founded set most commonly used for termination proofs is the set N of
nonnegative integers under the ) ordering. When dealing with more than one variable,
the lexicographic ordering on n-tuples is useful. For example, to use the lexicographic
ordering for two variables u and v, we first look for well-founded sets W  and w,

such that ueW, and veW.. Then we consider the pair (u,7v) and require
achieve (u’,v’)>(u,v) protecting a(x,v), ueW, veW, varying u,v .

T : where > is the lexicographic ordering on pairs, l.e. we must

achieve u'>uV(u'=uAv'>v) protecting a(u,v), ueW , veW,
varying u,v .
Another, often useful, way of handling several variables is based on an assumption of
monotonicity for each variabie. Determining, for some variable u , that the initial value u,
! is greater than the final value u, suggests that u decrease monotonically, i.e. u'>u . In
that case, we may also

assert u udu,
within the loop (provided we can determine the vaiues of u, and u, ). Given two
monotonic variables © and v, termination may be ensured by requiring

achieve u'>u, v, u>uve'>v
protecting a(u,v), ueW,. veW,. u)u*. vyv, varying u,v

In other words, each iteration reduces the vaiue of one of the variables, without increasing :
any other (cf. the muitiset ordering on {u,v} in Dershowitz and Manna [Mar. 1978]).




PROGRAM SYNTHESIS 101

@ Recursive Loop Rule. The following rule forms a recursive loop:

assert ¢(u), ueW
purpose al(u)

assert v(v), veW, udv
achieve a(v) varying

<

assert- .aii)
assert (i), ueW
P(%): begin purpose a(u)

assert ¢(v), veW, udy
purpose a(v)
P(v)

assert a(v)
end
assert a(u) .

The current goal is
achieve a(v) varying v ,

while the code that is being synthesized — call it P — has the similar
purpose a(u) .

Before we can insert a recursive call P(v), we must know that the input assertion ¢ is
satistied by the arguments v . Furthermore, to guarantee that the recursion will not
continue forever, we require u>7 In some weli-founded ordering (W, »>) .

Conditional-formation techniques are the subject of Luckham and Buchanan [1874]
and Warren [1976]. The achievement of conjunctive goais is the topic of Waldinger
[1977]); protection machanisms are used for this purpose by Sussman [1875); Sacerdoti
[t975] addresses their nonlinear nature. The use of invariants for the automatic
construction of iterative loops is also discussed by Duran [1976]). Recursion-formation
techniques are discussed in detail by Manna and Waldinger [1877); similar work appears in
Sikiossy [1874] and Darlington [1976). Misra [1976] gives criteria for a loop to be
formed directly from the specifications.

In the next section, we apply these rules to the synthesis of several programs.

UYLV R YA T

andmd,




4. EXAMPLES

Our first example is a straightforward synthesis of the integer square-root function.
Arrays are introduced in the second example, which is a program to find the position of a
minimal element of an array. Our concluding exampie is Hoare's Partition algorithm [1961];
it is a nontrivial problem, requiring some degree of understanding and ingenuity to program.

Example 1: Integer Square-root.

in an earlier chapter we developed a binary integer square-root program from a
schema; in this chapter our goal Iis to synthesize some program satisfying the
specifications

P, begin comment integer square-root program

assert aeN
achieve 2=|ve] varying z
end

o e e e sa -
b — G G— —— e

from scratch. The program should set the variable z to the largest integer not greater
than the square-root of ¢, for any nonnegative integer a .

We assume that the v~ function is not primitive; otherwise we could ‘achieve our
goal using the assignment rule to obtain
z = |vaj .
Therefore, as a first step, we endeavor to replace the goal with one that does not contain
t~g ¥~ function.
Using the definition of |u],
fact v={u] = vSuAudv+liAvel ,
the goal
achieve z2:|va] varying 2

may be transformed into the equivalent goal




e T — T

PROGRAM SYNTHESIS 103

purpose zslﬁj
achieve 25va, Va<z+l, z€Z varying 2
assert r=|vd] .

Using the

fact usvy ® u2sy when u20

to eliminate the v~ operator, the conjunct z$v@ may be replaced by 22<a and vaczel
may be replaced by a((z+l)2 , With the side conditions z20 and z+120 added:

* achieve z2<a, 220, a<(z+1)2, 2+120, zeZ varying z .

This simplifies to just
achieve 22<a, a<(z+1)?, zeN varying z .

. The above subgoal is a conjunction of three relations; the protection rule suggests
splitting it into two consecutive subgoals:

L_ purpose z2$a, a((z+l)2, zeN varying z
] achieve a((z*l)2. zeN varying 12
achieve 122<a protecting al(z+1)2, zeN varying z

assert z2<a, a<(z+1)%, zeN varying z .

Later, we shall see what alternative splittings might resuit in.

To achieve the first subgoal

we apply the strengthening rule to this subgoal, using the transitivity of inequality

i

i achieve a((z+l)2, zeN varying z | 4

expressed in the
fact u<w when uww, vsw ,

obtaining the stronger

~ e —— - -

achieve a<v, vs(z+l)2, zeN varying z,v .

\o— -
.

Now, the

fact usu’ when u2lVus0




104

tells us that taking 2+] for v will give vs(ul)2. provided that z+12]Vz+1<0. The
subgoal zeN implies z+121 , leaving

achieve adz+l, 2eN varying :z .

Since v is not an output variable, it has been eliminated from the goal. The goal may be
strengthened further to

achieve g=2 varying z,

by matching it with the
fact udu+v when vX0 .

This goal, in turn, may be attained by the simple assignment
purpose c((z+l}2. zeN

zZ = a
assert z=a .

The forward loop rule suggests turning the second subgoal

achieve 12<a protecting a((zol)z. zeN varying z

into a loop with the invariant

assert a{(z+ 1)2. - z€eN

maintained true until the exit clause

until 125a

becomes true. We have the skeleton of a loop:

purpose ¢<(z+l)2. reN
2 =g
assert 1=g
purpose zzsa. a((z+|)2. zeN
! loop assert al(z+1)2, zeN
until 22<a

' approach z2<a protecting al(z+1)2, zeM varying 1z
repeat

7 o assert zzsa. ¢<(z+l)2. zeN .




B s s e > isres 55

ey --v~»m~,@ﬂ

PROGRAM SYNTHESIS 106

Within the loop body, we must

approach 22<a protecting c<(zol)2. zeN varying z
in order to make progress towards the exit test, while protecting the invariants.

To ensure termination of this loop, the fermination rule requires that the nonnegative
integer 2 be reduced in some wel-founded ordering. We note that upon exit z,,,zsa '

while upon entering the loop z=¢ . Therefore, z,sz,,zsz, , and we hypothesize that z is

decreasing monotonically from & to it final value. We therefore take the set of
. nonnegative integers N under the usual ) ordering as the well-founded set. We have
obtained the loop-body subgoal

assert ¢<12
achieve 2'>x protecting al(2+1)2, zeN varying 2z ,

i.e. we wish to set the nonnegative integer 2z to a value less than its current one, while

protecting the loop invariant ¢<(zol)2. The assertion indicates that the exit test 12<a
does not yet hold if the loop is being continued.

With each loop iteration we wish to decrease the value of z, while protecting the
invariant a((z*l)2 . Using the transitivity of inequality again, suggests looking for some v
such that a<v and vs(ul)z . But e may be asserted for the previous value of z;

therefore, to achieve 4<(z+1)2, we need only achieve z'2s(z+l)2 , Le. 2'Sz+l . This
leaves us with the goal

achieve 1>z, 1'Sz+] protecting 2¢N varying 2
; ’ which Is equivaient to
achieve 1z=z-1 varying :z
and may be achieved by the assignment

,’ z = 2-] .

We have derived the program

LT
4




P, begin comment an integer :qdan-root program

assert aeN
2 = a

loop assert a((ul)z, zeN
until z2<a
z = z-1
repeat

assert z=|va]

end .

(re T e C— — — —— — — — —
e — — — — — — — — —

With most of the subgoals left in, the program would look like:

P, begin comment a cluttered integer square-rool program
assert aeM
purpose z=|va|
purpose 5va, valz+l, zel
purpose 22<a, a<(ul)2. zeN
purpose a((zol)z. zeN
z = a
assert 1=a
‘purpose 2254, a((z+l)2. zeN
loop assert al(z+1)2, zeN
until 22<a
purpose ')z, ¢<(z+l)2. zeN
purpose 1>z, z'sz+l, zeN
z = z-1
assert 1)1, r'S:+l, zeM
assert "1, a<(x+1)2, zeM
repeat
assert 1%<a, al(z+1)2, zeM
assert 2254, a¢(z¢1)2, zeM
assert <va, vaci+l, ze2
assert z=|va]
end .

e e e . —— — — ———— — — — —— e 7ot e e e e
e e e e e ——— e — —— — —— s —— e




- PROGRAM SYNTHESIS 107

N -»:M§I’.ﬁ‘m 3

What wouid have happened had we split the goal

achieve 22<a, al(z+1)2, zeN varying z

in a different manner? Had we chosen to first

achieve 129, zeN varying z

and then

achieve a<(z+1)2 protecting zzsa, zeN varying z ,

we would be led in a similar manner to the loop skeleton

 * ‘ achieve 125¢, zeN varying :z
‘ purpose 12sa, a<(z+1)2, zeN
loop assert zzsa. zeN
until a<(z+1)2

. . approach c((z41)2 protecting zzsa. zeN varying 1z
repeat

assert 2254, a((zol)z. zeN .

C ooty

To achieve the initialization subgoal, we note that the input assertion aeN implies a20 .
) Therefore, to achieve 22<a , it suffices for 22<0 . But the

fact OSu2

implies that 2220 , so we may Initialize 1:=0. We would then decide to approach the exit
test by increasing z from 0. To guarantee termination, we could use the weli-founded set u
of integers less than va ; the smaller the integer, the greater it is in the well-founded '
ordering. Continuing in a manner paralieling the derivation of P , we get

'
b4




108

P/: begin comment alternative integer square-root program
assert acN
2 =0
loop 22<a, zeN
until a<(z+1)2
z = 24}
repeat
assert z=|va]
end .

P — —— — A G— S at— — C———
e e C— v — — — c— — — gl

in the section on extension, we shall see how this program may be improved.

Had we split the goal
achieve 28v@, Va<z+l, zeN varying 1z
into

achieve zeN varying :
achieve 2254. a((ul)z protecting zeN varying z ,

we would be led to

assert aeN

achieve zeN varying 1z

loop assert zeN
until z2<aAad(z+1)2
approach zzsaAa((uI)z protecting 1¢N varying :
repeat

assert z=|va] .

The choice of initial vaiue for z such that zeN is completely arbitrary; to ensure

termination we would have to first determine whether the chosen initial value is less or
greater than the desired final vaiue.

N —




R s

LR Y

ERE T N

A P ey o

R Ey

PROGRAM SYNTHESIS

The resulting program would be

assert aeN

z i€ N

loop assert zeN
until 22<aAa<(z+1)2
if 22<s then z = z+] olse z := 2-1 11
repeat

assert z=|va] ,

where z:€N Is a nondeterministic assignment of some element of the set N to the
variable z . This solution is more complicated than elther of the previous two possibilities.
in general, it is advisable to maintain invariant as much of the goal as possible and keep
the exit test as simple as possible.

Example 2: Array Minimum.

In this example, we wish to synthesize a program to search for the position of a
minimal element in an array segment. Our goal is to synthesize a program for

P, begin comment array minimum-position program ;
assert {,jeN, igj |
achieve A[z)sA[iy], iszsj varying 2 |
end . |
)

F——— —-

The conjunct A[z]<A[i:f] Is short for (VE)(isPs))A[2]<A[S] ; in general, for any predicate
P+ pluv] is short for (VENustsv)p(f) . Note that the array A is constant and only the
value of the variable z may be aitered by the program. in other words, we wish to set
the variable z to the index of an occurrence of the smaliest element in the nonempty
array segment A[ly] . '

Using the
fact p(u) when (), u=v ,

this goal may be strengthened by introducing a new program variable y and substituting it
for the constant i ; the conjunct 9=/ must be added to the goal. Introducing & new
variable will aliow the program to manipulate its value so that the goal may be achieved in
stages. We derive




110

purpose A[zBA[lq]. iszg)
achieve A[z)sA[yf), yszsj, y=i varying 1,9
assert A[x]sA[iy], is:gf .

Using the profection rule, we shali attempt to achleve this goal in two stages, first

achieving both A[z]<A[y:f] and y<zsf and then achieving =i :

achieve A[z]sA[yy], yszs) varying 2,9
achieve y=i protecting A[z]sA[yy), yszsf varying z,y .

By matching the first goal
achieve A[2]s4[yj), ysz8) varying z,9
with the
fact plu:u) when pu) ,
the goal may be strengthened to
achieve A[z]<A[f), »=/. ysz8j varying 2,9 .
Using reflexivity
fact usu
to further strengthen this goal, we get
achieve A[z)=A[f), 9=/, ys1s) varying 12,y .
Now the
fact f(u)=f(v) when usv ,
for any function f (the array 4 may be considered a function), suggests
achieve 1=/, y=/ varying 2,y .
This is in turn achievable by the multiple assignment
(z,y) = (1.))
We are left with the subgoal
achieve 9= protecting A[z]sA(y:]). ys:§) varying z,9 .,
which, by the forward-loop rule, suggests the iterative loop




B R RSN OB B ¥4 S S P 0

PROGRAM SYNTHESIS

loop assert A[z]sA[yy), ysz§f
until 9y=i
approach y=i protecting A[z]sA[yy], ysz8) varying z.9
repeat

assert A[z]sA[y4], yszsf, 9=t .

The remaining loop-body subgoal is

approach 9y=i protecting A[z]sA[yy], yszsj varying z,9 .

By noting that upon entering the loop 3=/ and upon exiting the loop j,=i , where it is

¢ given that igj, the termination rule suggests that the variable y remain an integer and
decrease monotonically from § to i . Including the range of y , we now have

assert y=i
achieve ')y protecting A[z]S4(yy], y<zs), yeZ, i<ysj varying z.9
.. In other words, assuming that the goal y=i has not yet been achieved, we wish to
' decrease y while protecting the invariants A[z]<A[y:j] and y<z<j along with the added ¢
invariants yeZ and isysj for termination. i
Since we are assuming that y'eZ and i<y’ hold, and we know that for the loop to be 1
. continued y'=i, it follows that iSy’-1. So, in order to achieve i<y, we need to achieve }
y’-1<y . This, together with the additional requirement that y<y’ and yeZ , forces y=y'-1.
After assigning
y =y,
the remaining goal is
assert A[z]sA[y+14], y+lszs)
achieve A[z])sA[yj], yszsj varying 1z .
: Since the value of 9 has changed, we have broken the protected clause into an assertion
{ that the conjuncts held for the previous value of 9 and z and a gral to reachieve them
' for y-1. The assignment to 9 is protected by only varying z in this goal.
i
, Part of the above goal has already been achieved and part remains to be achieved.
, . Using the following basic fact about universal quantifiaction:
2
L fact plu:w] when pluw], plweliv]), uswso ,

we can break the conjunct A[2])sA[y:f] into two parts:

purpose A[z]s4[yy), yszsj
achieve A[z]sA[y:w], AlzlsA[w+ly), yswsj, yszSj varying z,w
assert A[z)sA[yy), ysz8)




112

Since we have already asserted A[2')SA[y+1j] and 3¢y+isz's), we may achieve
Alz]<A[w+134], yswsj, and yszsj by leaving z unchanged and letting w=y . We are left
with only

achieve A[z]<A[y] .

This latest goal has an empty variable list; it can unly be achieved by proving that it
is true or testing that it Is true. Since it cannot be proved true, we use the conditional rule
to generate

it Alz]sA[y] then
else assert A[z]<A(y+1y], y+lIszsf, A[y)<A[z]
achieve A[z)sAly:w), A[z)sA[w+l3), yswsj,
9528 varying z,w .
¢

The then-clause is empty, since A{z]s4[y] holds at that point by virtue of the test; when
the conditional test is false, we may use that fact, along with the fact that the invariants
held for the prior value of 5 to achieve the previous goal. We know, then, that
A[yJ<A[2']sA[y+14] , 80 to achieve A{z]SA[w+1y] we let z=yew . Substituting for z and
w , we have

achieve z=y=w, A[yl<A(y:y), AlyIsAly+1y4], ySysj varying z,w .
Since A[z]sA[y+1y] and y+1sj have already been asserted, this reduces to just
achieve 1=y varying :z .
Achieving this via an assignment statement, we obtain the conditional
if A[z]<A[y] then else z =y fi,
or simply
if ADKA[z] then z =y fi .

We have derived this program for minimum:

ERun

A o i ki Al




PROGRAM SYNTHESIS 113

TRy e

i P, begin comment arrgy minimum-position program 1|
| assert i,jeN, isj |
| (z,9) = (.5 |
| loop assert A[z]<A[yyl, ye2, isyszsf |
| until y=i |
| y =yl I
| it A[yKA[z] then z =y fi |
| repeat |
| assert A[z]sA[iy), iszg |
| end . |
L )

In the next section, we shall see how to extend this program to achieve the added relation
x=A[z] .

Example 3: Partition.

In this last synthesis example, we consider the Partition problem: glven an array
segment A[i:f], rearrange its elements so that there exists some position g which
partitions the segment into two ordered parts. In other words, each element of the left
part A[i:g] is to be less than or equal to each element of the right part A[g+1:j]. The
goal specification may be expressed as

P,. begin comment partition program
assert i, jeN, i
achieve A[i:g)sAlg+1y), isg, g+1sf, bag(A[i:f]=bag(Aif]) varying A4.g
end ,

e

[

where A’ represents the prior value of the array 4. The function bag(A[u:v]) ylelds the
multiset {A[u], A[u+1], . . ., A[v]} ; thus, the fourth conjunct of the goal implies that the
new array segment must be a permutation of the original segment. We ilustrate two
possible solutions.

T
T TR B e o o




114

1. First Solution

As a first try, we strengthen the goal specification using the
fact pluu] when p(u) |
to eliminate the quantifier [i:g]. What we wish, then, is to
achieve A[i]sA[g+1y]), g=i, bag(A[i:}))=bag(A'[if]) varying A4.g

(the subgoals isg and g+lSj were deleted since thay follow from the new goal g=i and
the assertion i<j.) The subgoal g=! can be achieved by the assignment

g =i,
leaving only

achieve A[i]sAi+1yf), bag(A[t;f))=bag(A[iy]) varying 4 .

We have aiready seen how to synthesize a program to find the position of a minimal
element of an array; so we know how to

achieve A[z)<A[i+1:d], is1<z8f varying z .
This, along with the transitivity of inequality,
fact usy when usw, wse ,
suggest strengthening the above goal to
achieve A(ilsw, wsA[i+lij], bag(A[i;f]))=bag(A(i;j]) varying d.w ,

where the new program variable w can be set to any convenient value. Comparing what
we have with what we want suggests letting w=A[z] and splitting the goal into the
disjoint goals

achieve A[z]<Ali+ly], i+liszs), bag(A[i:f])=bag(A'(if]) varying 2
achieve A[i]sA[z] protecting A[z]sA[i+1y]), i+lszsj,
bag(Ali:;)]=bag(A'[i;j]) varying 4 .

The permutation requirement in the first goal is satisfied, since that goal does not vary 4,
l.e. A=A ; the rest is achieved by the oid minimum program. To achieve the second goal
A[i)sA[z] , one might try to assign A[z):=A[i], but that would not protect the permutation
requirement. We can however test if A[i]J<A[z] aiready holds:

it A[i)sA(z] then
else assert A[z)KA[i)

achieve A[i]sA[z] protecting ... varying 4
fi .




—

PROGRAM SYNTHESIS 116 i

Knowing, for the else-branch, that A’[z]sA’[i] suggests achieving A[i]sA[z] by fetting
A'[2)=A[i] and A'[i]=A[2] . Since iszsj, this aiso protects the permutation requiremcnt

bag(A[t:f])=bag(A'(1:j]) . We have
ir Ali)<A(z) then

else (A[i), A[2)) = (A[z], A[1])
i .

PRy

Accordingly, our first solution is

v

, begin comment first partition program
assert {,jeN, i
g =1
(z,9) = (.0
loop assert A[z]<A[yy], ysz<)
until y=i+l
9 = 51
if A[y)KA[z] then 2z := 9 fi
repeat
if A[z)KA[i] then (A[i), A[z)) := (A[z], A[i])) fi
assert A[i:g)<Alg+1y), i<g, g+1sf, bag(A[iyj))=bag(A'[i;])
end .

g

[ — — —— . A" ct— c— ——— — —

This program leaves something to be desired. Despite the fact that it satisties the
stated specifications and that it is not inefficient, the fact that for the usual applications of
Partition it is desirable that g be closer to the mean of { and j went unspecified. The
above program always results in g being equal to .

2. Second Solution

. 3 We do not want, then, to force g={. instead, we leave g variable and reconsider
' i our original goal (temporarily leaving out the permutation reguirement)
i ' ‘
: o achieve A[i:glsA[g+14), isg, g+l varying A,g .
3
‘ : This time, we first strengthen the goal by Introducing a new variable A to replace the
AR expression g+l :

achieve A[i:;g}sA[Ay), g+l=A, isg, ASj varying 4.g.A




116

Then we try to eliminate the double quantifier in A[i:g]<A[A4:f] by introducing a new
variable w , using the

fact usy when usw, wsv .
This yields
achieve A[iglsw, wsA[hy], g+l=h, i<g, ASf varying A, g, A w .

There are now four variables that the program may set: 4, g, A,and w.

Now we can split this conjunctive goal into two:

achieve A[i:g]sw, wsA[ry), isg, Agf varying 4, ehw
achieve g+l=h protecting A[i:g]lsw, wsA[rj], isg, Asj
varying A.g.hw ;

the second will become a loop with exit test g+l=4 and the first will initialize the
invarlants. By reducing quantifiers to single elements, the first goal may be strengthened
to

achieve A[il<w, wsd[j], g=i, A=j varying 4,g.h v ,
and the first conjunct may be further strengthened to A[i]=w :
achieve A[il=w, wsA[j), g=i, A=} varying A,g.h,w .

At this point, we would like to assign to w, g, and A. Before we can do that we must
substitute for the other occurrence of o :

achieve A[il=w, A[i]sA[j]. g=i. A= varying 4,g.Aw .

Splitting this into two disjoint goals and assigning we get (putting the permutation
requirement back in):

achieve A[i)<A[j], bag(A[i;j])=bag(A'[i;j]) varying A
(g, A, w) = (i, A[i]) .

As In the first solution, the remalining subgoal yieids the conditional
it AUDAL] then (A[1), AUD = (YL ALD i .

The current status of the program is:




PROGRAM SYNTHESIS

assert i, jeN, i
if A[DA[]] then (A[i), A[jD) := (4f), ALiD) f£i
(g. hw) = (i,f, AliD
assert w=A[i), A[i]l<A[j), g=i. A=
loop assert A[i:g]sw, wsA[hj]), isg, Asf
until g+l=A
approach g+l=h protecting A[i:glsw, wsdA[Ary]), isg, hgf
varying 4A.g.h.w
repeat .

We may now determine bounds for ¢ and A and apply the fermination rule. Initially
g,=i¢j=h, , while upon termination isg,+l=A,<j. This suggests keeping g, AeZ and letting

g Increase from { to its final value g, , while % decreases from j to #, . The
resulting bounds, isgsg, and A,sShsj, combined with gy =A,-1<A, implies the invariant

€<k . So to ensure termination, we require that ¢ and A remain integers, and that
progress Is made by increasing g and/or decreasing 4, until they meet somewhere in the
middie. Accordingly, the loop-body subgoal becomes

achieve g'<sg, A2k, g'<gVh'>h
protecting A[iigl<w, wsA[ry), g, hel, isg<hsj varying A.g.h,w
Splitting the two quantifiers into the range that has already been achieved and the

range that remains to be achieved, we get

achieve g'<g, A'2h, g'<gVh"h, Alg'+l:glsw, wsA[h:h'-1]
protecting Afiglsw, wsA[hy), g, heZ, isghsj varying A.g.hw .

We shall protect A[i:g]<w and wsA[A:;j]) by not varying w or any of the elements in the
array segments Alig] and A[hy]. Now if we reduce the quantifier [g’+1:g] to a single
element (letting g’+1=g ) and make the quantifier [4:A’-1] vacuosly true (insisting that
A>h’-1), then we get

achieve g'se. N2h, g<gVAOR, Alg'+1]sw, g+l=g, MA'-1,
protecting A[i:g)sw, wsA[Aj), g, he2, isgiAsj varying A4.g.h

which simplifies to

achieve g'+l=g, A'=h, A[g'+1])sw
protecting A[i:glsw, wsA[hy] varying 4,g.h .

The conditional rule suggests achieving the conjunct A[g’+1]sw by testing:




118

it Alg+1)sw

fi .

Without going into more detall, the remaining subgoal generates two more cases: if
wsSA[A'-1], then & is decremented by 1 ; otherwise, A[A’-1}Kw<A[g’+1] and A[A’-1] is
exchanged with A[g’+1] and both g is increased and 4 decreased. The completed

program Is:

then g = g+l
else assert w<A[g]
achieve g'sg, A2h, g'SgVA"Dh, A[g'+l:gl<w,
wSA[A:A'-1] protecting ... varying g.h .

assert (,jeN, i

repeat

end .
[

P/. begin comment partition program

if AUDA[] then (Ali), A := (A[j], ALiD) £i
(g, hw) = (1,1, Ali]
loop assert A[i:gl<wsA[ry], g, hel, isg<hsf
until g+l=A
if Alg+llsw then g := g+l

assext A[iigl<A[g+1y], (g, g+14f

else if wsA[A-1]
then A = A-]
else (g,A) = (g+1,A-1)
(Alg), A[AD) := (A[A}, AlgD
fi
fi

W A T CINLD G W) S —— —— — I —— — C— G— — —




PROGRAM SYNTHESIS 119

8. EXTENSION '

In this section, we lllustrate techniques for extending a given program to achieve an
additional relation. There are two basic methods. One is to append code at the end of the
program with the purpose of achieving the additional goal, while making sure that the
relations aiready achieved by the program remain intact. The second method is to achieve
the added relation at the outset and modify the program to ensure that it maintains that
relation true until the end of the execution.

This second method is also used for local optimization: if a program contains an
expression that is relatively difficult to compute, but must be recomputed for each loop
{teration, then it may be possible to Iintroduce a program variable that will invariantly
contain the value of the complex expression, and for which there is a relatively simple way
of deriving the new value of the variable from the old value. This new variable must be
updated whenever the value of a variable in the expression is changed, and may be
substituted for that expression wherever it occurs in the program text.

Example 1: Array Minimum.

Consider our program

B !
| P, begin comment array minimum-position program |
| assert i, jeN, igj |
| (z,9) = ¢.9 |
| loop assert A[z)<Alyj]. yszg |
| until y=i |
I y =yl |
| if A[y)KA[z] then z = y fi |
| repeat |
| assert A[z)sA[iyf]), iszsj |
| ena, |
[ — - |

and assume that we wish instead to
achieve A[z)sA[iyf). iszsf, x=A[z] varying z,x .

The above program only achieves the first two conjuncts of the new goal; we must extend
the program to achieve the additional conjunct x=A[z] as well.

[P SRR - T S B




120

One simple way to accomplish this would be to split the new goal into two disjoint
goals:

achieve A[z]<A[ly), iszs) varying ¢
achieve x=A[z] varying x .

For the first, we already have a program; for the second, we may simply append the
assignment

x = Alz] .

A second possibility would be to begin by achieving the relation x=A[z], and then
protect that relation while achieving A[z]<A[ij] via P,. In other words the relation
x=A{z] should be a global invariant of P, , holding throughout execution of the program.
in order to accomplish this goal, viz.

achieve x=4[z] in P, varying x ,

we must set x to the appropriate value whenever the variable z changes value. The
assignments to z are

z = | z:=9.

When z s initialized to j, we initialize x=A[z] to 4[j]; when z is reset to y, we reset
x to A[y]. This yleids the program

(z,9.x) := (4.4, 4D
loop assert A[z]sAlyy), yszs)
until y=
y =yl
it Aly)KA[z] then (z,x) = (5.4[y)) 11
repeat .

As It stands now, the first alternative requires iess computation. But since we have
established the global invarlant x=A[z], the conditional test A[y]<4[z] may be simplified
to. A[9)<x . The final version of this program is

it B




i

Dol o

B ok AR e A et - - - . -

PROGRAM SYNTHESIS 121

assert x=A[z] in

P/: begin comment extended array-minimum program

assert i, jeN, isj
(z,9.%) = (1.4, 4D
loop assert A{z]sA[yf), yszsf
until y=i
9y = y-1
if A[yKx then (z,x) = {y,4DY)) fi
repeat
assert A[z]sA[iy], iszgf
end .

O " . —fE—" CP— — ——— a—— —-—-1
b A e C— — — —— —— — — — —— ]

-

in a similar manner, we could begin with the program

-~
-

! begin comment e¢xtended array-minimum program
assert i,feN, isf
(.%) = ¢, 44D
loop assert xsA[y:]
until y=i
y =y
it A[y)<x then x := A[y] fi
repeat
assert x<A[iy)
end

—— — p— S— C—— ap— —— —— —— —
e G c—— E— —— — —— — — —— ora— ]

-

that only achieves xsA[iyj], and extend it to achieve x=A[z] as well. There is no easy
way to set z at the end of P,” so that x=4[1]. But we can

achieve x=A[z] in P varying z
by examining the assignments to x ,
x = Aff] x (= .A[y] .
The corresponding assignments to ¢z would be
z =] 2 =9,

yleiding the same programas P /.




122

Example 2: Integer Square-root.

In our program,

P begin comment integer square-root program
assert aeN
z =0
loop assert z%<a, zeN
until a((z+1)2
1 = x+)
repeat
assert z=|va]
end ,

[ T — — — — — — —
e s e — —— — —— — ]

. . the exit test a<(z+1)2 is relatively difficult to compute as it involves squaring. It may be
repiaced by a<s, if we can extend P, to achieve the giobal invariant .t=(z+l)2 :
;chtcvc x=(z¢l)2 in P, varying s .
The variable z is set by two assignments in the program
z =0 7 = z24)
we must assign appropriate values to s to maintain the desired relation .t=(z+l)2 .

One way to accomplish this is to use a collection of rules that relate assignment
statements to the values of the program variables. One of them states that in order for a
global assertion of the form

assert (y-b):2+a,2=(x-a )+[b +(x-a,-6,)+2:a,+(b,+b+a)] in P
holds if the assignments to x and y in P are of one of the two forms
(x,y) = (a,bd)
. or
i. 7 (x,9) = (x+a,,y+b xeb) ,

, where a,, b, , a,, b ,and b, are of constant value in P .

.- '". Let us try to apply this rule to the problem at hand. We match x and % in the rule
with z and s in the program, respectively. The assignments to z are

1\ z =0 z = z2+]
\1




PROGRAM SYNTHESIS 123

sowelet a, = 0 and a, = | . Thus, assignments of the form
(z,5) = (0,0) (z,5) i= (241, 54b24b)
achieve the relation

(5-8,)+2+122 (2-0)+[b,+(2-0-1)+2+1+(5,+5,+0)]

(s-b,)+2=2¢[b +(z~1)+2+b,] .

So we are looking for instantiations of b , b, , and b, , such that
(5-b,)2=2[b,(2-1)+24,] = s=(z¢1)2 .

isolating s to the left of the equality and matching, leaves
zo[b,(z-1)/2¢bJob, = (2+1)2 .

Transtorming (z+1)2 into z+(z42)+1 » suggests b = | and
b(2-1)/2+b, = 242,

which, in turn, suggests b =2 and b, = 3. Instantiating b , b,, and b, back into the
assignments, we get

h (z,5) := (0,1) (z,8) = (24],542:243)
| A turther improvement would be to
achieve (=2:2+43 in P/ .
By another rule (<> in the appendix), to get
:; assert a (y-b)=b+(x-a) in P ,
; the proper assignments are

(x,y) = (a,0) (x,9) := (x+qu,y+b-u) .

This suggests the instantiation

: '
A PO
C (x=>29=1a=04=1uml),
:E ' leaving
i ‘ »
» o (-5))=boz = (n20243 .
1 N
»
' ' ~ . -




124
k Taking b, = 3 and b, = 2, we get the assignments
]
(z,5.2) = (0,1,83) (z,5,0) = (z41,3¢L,842) ,
and the program
1 f | |
b | assert s=(z+1)2, (22:2¢43 in | ’
| P/: begin comment famous integer square-root program |
| assert aeM |
| (z,5,0) := (0,1,9) |
* | loop assert 22<a, zeM |
| until a<s |
| (z,5,8) = (z+1,541,142) |
| repeat |
' R assert z=|va] |
o | end . |
L j
3 Example 3: Binary Integer Square-root.
At the conciusion of the overview chapter, we had obtained the following binary
integer square-root program:
f \
| assert aeN, zeN, yeN in |
| P, begin comment binary integer square-root program |
1 | assert aeN |
| Gy =00 I {
| loop until a<y? |
I y = 29 |
, | repeat |
' | loop assert 1Sva, va<li+y |
L L. | until ysi |
- | y = 9/2 |
i | if (2+9)2Sa them 1z = 249 fi |
LT | repeat l
| assert 15v@, vaci+l, zeN |
. | end . |
1;\ . L )




PROGRAM SYNTHESIS 126

e BMian Son v mak AT R

S

In this program, the exit test a<y2 and conditional test (z+y)2Sa are the most expensive

expressions to compute. The latter is equivalent to 12+2-y~z+y25a , and assuming that we
can

didh. an

achieve u=22, v=2yz, w=y? in P, varying u,v,w , 4

we may replace the tests with e<w and u+v+wsa , respectively.

Whenever z or y is updated, the new variables u, v, and w must be updated 1
correspondingly so that their relations with z and y remain invariant. In a manner similar
to the previous example, we obtain

assert acN, zeN, ye?“. u=22, ve2syez, w=y2 in
P,. begin comment extended binary integer square-root program

i
I
l
| assert aeN

| (z,y,u,v,w) := (0,1,0,0,1)

| loop until adw

| (y.w) = (29, 4w)

| repeat

| loop assert 25va, Va<i+y

| until y<I

| (y,v,w) := (9/2,9/2,w/4)

| if usv+w<a then (z,u,v) := (249, usvew,v+2.w) fi
| repeat

| assert z5va, Va<z+l, zeN

| end .

S IR G . C— C— — — T — —— Y — — — —— ]

L

The variable z affects only the vaiue of z itself, so it is a candidate for elimination
from the program. The only problem is that it is z that contains the desired final result.

Fortunately, since we have the global invariant p=2+y.z , we can just append the goal
achieve v=2:yz varying z
to the end of the program. We shall return to this unachieved goal later.

Once we have giiminated the assighment z:s2+9, the variable 9 only affects the the

exit test y<1 . But we can replace the variabie y with v , since 0-12 and 9 is known
to be positive. This gives us the exit clause

until vwsl ,

for which the primitive




-
L

126

until ws|

may be substituted.

Squeezing the last drop of ink out of this example, we obtain yet another slight
improvement: To transform the test u+v+wsa =» u+p+w<0 , we can apply the transformation
u = u+g , yielding the initialization

(v,v,w) = (-2,0,1)
and conditional
if u+p+ws0 then (u,v) = (u+vsw,v+2w) f£i .

To avoid recomputing the expression u+v+w for both the conditional test u+v+w<a and
the assignment u:=u+v+w , a temporary variable could be generated, say ¢, such that
t=u+y+w . It would then be used in the test t<0 and assignment (u,v):=(r, v+2.w) .

Incorporating the above improvements, we obtain

f 1
| assert aeN, zeN, ge2N, usia=z?, ve2eyz, wey? in |
| P,/: begin comment optimized integer square-root program |
| assert aeM |
| (x,v,w) = (-a,0,1) |
| loop until a<w |
| w = 4w |
| repeat |
| loop assert z5va, va<(z+y |
| until wsl |
| (v,w) = (v/2,w/4) |
| t = usviw |
| if 1<0 then (u,v) := (f,9+2.w) f1 |
| repeat |
| achieve v=2+y:z varying 2 |
| assert <va, va<i+l, zeN |
| end . |
1 J

The variables z and y have been left in the assertions though they have been eliminated
from the program text; at any point in which these "ghost” variables are undefined by the
program, the intent of the assertions is that there exist values for z and 9 such that the
assertions hold.




B el S E R P ¥ T SR S

e e e

R T S L R T AT+ s e 2580 - 8 e i R e tim e e [

127

PROGRAM SYNTHESIS

Finally, another drop of computation is saved by

achieve ssy+w varying ¢ .
Since v=0 upon entering the second loop, we set s:=w at that point. When v is halved
and w is quartered, the new vaiue of s should become v/2+w/4=v/2+w/2-w/4=5/2-wl4 .
So as not to compute w/4 twice, we may first assign w:=w/4 and then s5:=5/2-w . When
v is incremented by 2-w, so must s be. We can now eliminate » from the program. For
the second loop, we have

s = w
loop assert sva, Vadi+y

until w<i

w = w/4

s = 3/2-w

Lo uyes

if 10 then (u,s) := (1,5+2w) fi

repeat .

We still have the goal

achieve v=2¢yz varying z .

Though % and v are now ghost variables, we know that s=v+w , w=y2 , and ye2" . From
these globai invariants and the exit test ws<l, we conclude that w=y=1 upon termination
of the second loop. Thus, to achieve the above goal, we need only

achieve s-1=2¢jsz varying 1z ;
we therefore assign

z = (s-1)/2 .

The transformation w = w/2 gives us our final version of this program (cf. Dijkstra
[1976)):




128

)
assert aeM, zeN, ye2N, u+a=z?, v=2eyez, w-2~yz. s=p+w/2 in |
P/': begin comment improved integer square-root program |

assert aeN |
(v, w) := (-a,2) |
loop until 2-alw |
w = 4w |
repeat |
s = w/2 |
loop assert 5Va, Va<z+y |
until ws<2 |
w o= w/4 |
s = (s-w)/2 |
t o= us+s |
if <0 then (u,s) := (1,5+w) fi |
repeat |
z = (s-1)/2 |
assert zsva, vacz+l, zeN |
end . |
J

We have successfully replaced the original exit test a(y2 and conditional test

(zoy)ZSa , both of which involve squaring, a relatively expensive operation, with the simple

tests 2.«a<w and ¢<0. This, at the cost of updating the variables by addition/subtraction
and muitiplication/division by powers of two, relatively cheap operations on binary
computers.

The real square-root program

begin comment real square-roof program
assert 0<a<l, 0<e
(z,9) = (0, 1)
loop assert z5va, Vali+y

i, until yse¢
' it (zoy)zs then z = 249 fi
P repeat

assert 1Sva, Valree
end

]

]
|
l
I
I
l
| y =92
|
|
|
l
L




. M e

PROGRAM SYNTHESIS 129

may be optimized in a similar manner to obtain Wensley's [ 1859] square-root algorithm:

TN IO R AAIET T e e T S Stgnr s

I
|
I
|
I
I
I
|
I
I
I
I
I
[

assert a+1-u-y=12 in |
begin comment optimized real square-root program |
assert 0s<a<l, 0<e |
(z,9,u) := (0,1/2,-a/2) |
loop assert zsva, Va<z+2+y |
until y<2-e |

(y,u) = (9/2,2-u) |

t = u+z+y |

if (<0 then (z,u) := (24249,1) fi |

repeat |

assert z<va, vadz+e |
end . I

]

specifications; in the next chapter we shall see how similar ideas may be employed to
generate the invariants from the code.

In this chapter, we have seen how to systematically develop a program from its




130

CHAPTER V1

PROGRAM ANNOTATION




s

NS DU UV ——— .

PROGRAM ANNOTATION

1, INTRODUCTION

As we have seen, invariant assertions are often needed for modifications to carry
through. But what if the programmer failed to supply enough of them? in particular, if the
program Is incorrect with respect to its specifications, then, perforce, some of the given
assertions (at very least, the output specification) do not reflect what the program is
actually doing. And without knowing what the program is doing, we cannot proceed to
debug it.

Program annotation Is the process of discovering invariant assertions from the program
text itself. Our task is to generate the invariants describing the workings of the program
as is, independent ot its correctness or incorrectness. The process is iterative, since
finding some invariants suggests others. Assertions supplied oy the programmer cannot be
assumed true, though they may be used to guide the search for correct invariants.

If the invariants associated with the point of termination of a program imply that the
given output specification Is true for any input satisfying the input specification, then the
program has been proved correct. On the other hand, if there exist legal input values such
that whenever the output invariants hold for those input values, the specifications do not
all hold, then the program is incorrect. In this manner, invariants are used for proving
correctness/incorrectness of programs.

Existing implementations of the invariant-assertion method of program verification are
not fully mechanical; the user must supply most, if not all, of the invariants himself. If the
original program "is not supplied with sufficient invariants to prove correctness or
lncorrectﬁess. they must be supplemented. These invariants then enable one to verify if
what the program does is what it was intended to do. Invariants are aiso useful in
analyzing other properties of programs, e.g. time complexity.

In the- following sections, we present a unified approach to program annotation, using
annotation rules — in the style of Hoare [1860] — to derive invariants. Section 2 is an
overview. [t is foliowed by two detalled examples: the first illustrates the basic
techniques on a single-loop program; the second applies the techniques to a program with
nested loops and arrays.

Three earlier annotation systems are:
® the system described in Eispas [1974], based malnly upon the solution of difference
equations;
® VISTA (German [1974], German and Wegbreit [1976]), based upon the top-down
heuristics of Wegbreit [1974]; and
® ADI (Tamir [19786]), an interactive system based upon the methods of Katz and Manna
(1876] and Katz [1976].




132

Our annotation system, as described here, attempts to incorporate and expand upon those
systems. Recently, Suzuki and Ishihata [1877] and German [1078] have implemented
systems that generate invariants useful in checking for various runtime errors.

2. OVERVIEW

In this section, we first define some terminology and then present samples of each
type of annotation rule.

1. Notation and Terminology

Given a program with its specifications, our goal is to document the program
automatically with invariants. If the program is correct with respect to the specifications,
we would like the invariants to provide sufficient information to demonstrate its
correctness; If the program is incorrect, we would like information helpful in determining
what is wrong with it.

We shall be dealing with three types of assertions:
® Global invariants are relations that hold at ali places (i.e. labels) and at all times during
the execution of some program segment. We write

assert a in P

to Iindicate that the relation a is a global invariant in a program segment P . (Actually,
a Is considered a global invariant even if it only begins to hold once the variables in o
have been assigned an initial value within P .)

® Local invariants are associated with specific points in the program, and hold for the
current values of the variables whenever control passes through the corresponding point.
Thus,

L. assert a

means that the relation a holds each time control is at label L .
® Candidate assertions, also associated with specific points, are relations hypothesized to
be local invariants, but that have not yet been verified. We write

L: suggest a .

Consider the following simple program, meant to compute the quotient ¢ and




PROGRAM ANNOTATION

remainder r of the integer input values ¢ and d:

|r P, begin comment integer-division program
| B, assert ceN, deN+l

| (g.7) = (0,¢)

| loop L assert

| until r<d

{ (q.7) = (g+1,r-d)

| repeat

| E,: suggest g¢<c/d, c/d<g+l, qe2, r=c-q«d
| end ,

[

where N is the set of nonnegative integers, N+l is the set of positive integers, and Z
is the set of all integers. This program will be used only to illustrate various aspects of
program annotation; complete examples of annotation are given in the next section.

The invariant
assert ceMN, deM+|

attached to the begin-label B, is the input specification of the program defining the
class of "legal" inputs. The input specification is assumed to hold, regardiess of whether
the program is correct or not.

The candidate
suggest ¢<c/d, c/d<g+}, q€l, r=c-g:d

attached to the end-label E is the output specification of the program. It states that
the desired outcome of the program is that ¢ be the largest integer not larger than c/d
and r be the remainder. Since one cannot assume that the programmer has not erred,
initially all programmer-supplied assertions — including the program's output specification —
are only candidates for invariants.

In order to verify that a candidate is indeed a local invariant, we must show that
whenever control reaches the corresponding point, the candidate holds. Suppose that we
are given a candidate for a loop invariant

L:

0’

suggest r=c-g.d .

To prove that it is an invariant, one must show: 1) that the relation holds at L when the
loop Is first entered, and 2) that once it holds at L , it remains true each subsequent time
control returns to L . If we succeed, then we would write




-

134

L, assert s=c-q«d .

Furthermore, if r=c-g*d hoids whenever controi is at L , then it will also hold whenever

control leaves the loop and reaches E£,. In other words, r=c-¢g:d would aiso be an
invariant at E, and may be removed from the list of candidates at £ . In that case, we
would write

E .

0

assert r=c-¢-d and suggest ¢sc/d, c/d(q+l, qeZ .

Global invariants often express the range of variables. For example, since the
variable ¢ is first initialized to 0 and then repeatedly incremented by 1, it is obvious that
the value of ¢ Is always a nonnegative integer. Thus we have the global invariant

assert ¢geN in P,

that relates to the program as a whole and states that geN throughout execution of the
program segment P .

in this chapter, we describe various annotation techniques. These techniques are
expressed as rules: the antecedents of each rule are usually annotated program segments
containing invariants or candidate invariants and the consequent is either an invariant or a
candidate. This list is representative of the kinds of rules that may be used for
annotation; it is not, however, meant to be a complete list. Not only are these rules useful
for automatic or interactive annotation, but they help to clarify the interrelation between
program text and-invariants for the programmer.

We differentiate between three types of rules: assignment rules, control rules, and
heuristic rules.
®  Assignment rules yleld global invariants based only upon the assignment statements of
the program.
® Control rules yield local invariants based upon the control structure of the program.
®  Heuristic rules have candidates as their consequents. These candidates, though
promising, are not guaranteed to be invariants.
The assignment and control rules are algorithmic in the sense that they derive relations in
such a manner as to guarantes that they are invariants. The heuristics are rules of plausible
inference, reflecting common programming practice.




PROGRAM ANNOTATION 136

2. Assignment Rules

Many of the aigorithmic rules depend only upon the assignment statements of the
program and not upon its control structure. In other words, whether the assignments
appear within an iterative or recursive loop or on some branch of a conditional statement is
irrelevant. Since the location and order in which assignments are executed does not
affect the validity of the rules, these rules yield global invariants.

The various assignment rules relate to particular operators occurring in the assignment
statements of the program. Some of the rules for addition, for example, are: an addition
rule that gives the range of a variable that is updated by adding (or subtracting) a
constant; a set-addition rule for the case where the variable is added to another variable
whose range is already known; and an addition-relation rule that relates two variables that
are always incremented by similar expressions. Corresponding rules apply to other
operators.

For example, the addition rule is

Xx =@ x!= x4 Xx:!=2x+ ... inP

assert xeaoml-Noa,-N# ... In P,

where P is a program segment and the expressions @, are of constant value within P .
The antecedent

x =@ xi=x+a Xx:i=2x+, ... inP

0

indicates that the only assignments to the variable x in P are x:=a,, xi=x+q,, xi=x+a,,
etc. The consequent

assert xea+a N+a N+ . .. in P

is a global invariant indicating that x belongs to the set g+a N+ac N+ . . . throughout
execution of P — but only from the point when x first receives a defined value in P via
the assignment x:=a . (After any execution of x:=a , clearly x€a +a N+a, N+ . . . with
x=g+a,°0+4,+0+ ... , and i x=q+ameaon+...  for some m, n,... before
executing x:=x+q, , then x-a;a.-(mﬂ)m;m . . . after executing the assignment. Thus,
m represents the number of executions of x:=x+a, since x:=a¢, was executed last, n is
the number of executions of x:=x+q,, etc.) From such an invariant, more specific
properties may be derived. For exampie & bound on x may be derived using methods of

ot et




-
.

136

interval arithmetic (see for e'xample Gibb [1961]). Note that no restrictions are placed on
the order in which the assignments to x are executed, except that prior to the first
execution of x:=a  the invariant may not hoid.

In our simple program P, the assignments to the variable ¢ are
q:=0 q:=q+l .
So we can apply the addition rule, instantiating a, with 0 and a, with |, and obtain the
global invariant ge0+J-N, l.e.

assert ¢eN in P .

The assignments to r in P, are
ri=c ri=r-d .

Applying the same rule to them, letting ¢ and a=-d , yields the invariant
assert rec-d'N in P .

Given that d Is positive, we may conclude that rsc .

The set-addition rule is a more general form of the above addition rule, applicable to
nondeterministic assignments of the form x:€f(S), where an arbitrary element in the set
J(S)={f(s):seS} Is assigned to x. Note that an assignment x:=f(s), where it is only
known that seS, may be viewed as the nondeterministic assignment x:ef(S). The
set-addition rule is ‘

x:€S, xiex+§, «xiex+S, ... in P
assert xeS+ZS+¥S+... In P,
where ZS denotes the set of finite sums 45,4 . . . ¢, for (not necessarily distinct)

addends s, in §. If m=0, the sumis O0; if S contains the single element s, then

ZSs=s:N . (This rule appiles analogously to any assoclative and commutative operator "®".)
These assignment rules for global invariants are related to the weak interpretation method
of Sintzoft [1972] (see also Wegbreit [1876], Wegbreit and Spitzen [1976], and Harrison
{19877]) that has been implemented by Scherlis [1974] and German and Wegbreit [ 1976].

R Ry




PROGRAM ANNOTATION 137

In program P, the assignments to r were
ri=¢ ri=r-d .

Since we are given that ceN and deN+l, we may view these as the nondeterministic
assignments

r:eN r:er-(N+1) ,

and by applying the set-addition rule we obtain the global invariant reN-Z(N+1) . This
simplifies to

assert reZ in P ,
where Z Is the set of all integers.

To relate different variables appearing in a program, we have an addition-relation rule:

(x,9) = (a,8) (x,9) = (x+0,u,y+b-u)
(x,9) := (xearv,9¢dbw) ... in P

assert a4 (y-b)=b(x-a)) in P ,

where u, v,..., are arbitrary (not necessarily constant) expressions. The invariant
begins to hold only when the multiple assignment (x,y):=(a,,b) has been executed for the

first time. (The invariant a «(y-b)=b+(x-a) clearly hoids when x=a, and y=b . Assuming it
holds before executing (x, y):=(x+au, y+b u) , then after executing the assignment, both
sides of the equality are increased by a,'b,ou , and the invariant still holds.) The multiple

assignments In the antecedent of such rules, e.g. (x,y):=(x+a u,y+b u), may represent
the cumulative effect of individual assignments lying on a path between two labels, with
the understanding that whenever x:=x+g+u Is executed, so Is y:=y+b-u for the same
value of the expression u . In that case, the invariant will not, in general, hoid between
the individual assignments.

In our example, the assignments in the initialization path give us
(g.7):=(0,¢) ,
and for the loop-body path we have
(g, 7):=(q+1,7-d) .
By a simple application of the addition-relation rule with a =0, d=c, a=u=v=1, and b=-d,
we derive the invariant 1+(r-c)=-d+(¢-0) , which simpiifies to




138

assert r=c-¢d in P .

Note that this addition-relation rule (as well as several other relation rules) may be
derived from the following general relation-rule schema:

(x,9) = (a,0) (x,9) = (x®(us,), y®(u®))
(x,9) = (x®(v®a,),90(v®))) ... in P

assert (a ® )9(y®a )=(b®a )®(x®,) in P ,

where the operator @ is commutative and assoclative, operator @ satisfies

(a®b)®c=(a®c)®b , and (a®b)Bc=(a®c)B(b@c). The various relation rules are related to
optimization and extension techniques, where the desired relation is given along with the
assignhments to one of the variables, and the proper assignment to the other variable is
sought (as in the previous chapter). For related approaches see Caplain [1975] and
German [1978).

3. Control Rules

Unlike the previous rules that completely ignore the control structure of the program,
control rules derive important invariants from the program structure; they are directly
related to the verification rules of Hoare [19068). There are, for example, two rules to
push invariants forward in a loop. The forward loop-exit rule,

loop P’
assert a
until ¢
L
P"
repeat
L”:
L': assert a, —t
L": assert a, ¢

reflects the fact that if execution of a loop terminates at L” , then the exit test ¢ must
have just held, while if the loop is continued at L’ , the exit test was false. Furthermore,
any relation a that held just prior to the test, aiso hoids immediately after. The forward
loop-body rule,




' » ——
.

PROGRAM ANNOTATION 139

e T o R SR

assert a
loop L:
. P
; assert f3
‘ repeat
L: assert aVf§

states that for control to be at the head of a loop, at L, either the loop has just been
entered, or the loop body has been executed and the loop is being repeated. Therefore
the disjunction aV of an invariant a known to hold just before the loop and an invariant
# known to hold at the end of the loop body must hold at L .

Applying the first rule to the loop in the Integer-division program P, yields the
invariant 7<d at E, and r2d at the head of the loop body:

. (g.7) = (0,¢)

. loop L
until 74d
assert r2d
(q,7) := (q+1,7-d)
repeat
. . E; assert rdd .

To propagate invariants, such as r2d, past assignment statements, we have a
Sorward assignment rule,

assert a(x,9)
x = f(x,9)

L: assert a(f(x,9).y) ,

where f~ is the inverse (assuming that there is an inverse) of the function f in the first
' o argument, i.e. f~(f(x,9),9)=x . By using the inverse function f~, the value of x prior to

. ; the assigninent may be expressed in terms of the current vaiue of x as f~(x,9) . Thus, if
’ the relation a(x,y) held before the assignment to x, then after the assignment

a(f~(x,9),9) hoids. Even if there is no inverse function, variants of this rule may often be
, used to glean some useful information,




. i
8

140

In our example, since the first loop-body assignment ¢:=¢+] does not affect any
variable appearing in the Invariant r2d , the invariant is pushed forward unchanged. To
propagate r2d past the second assignment, r:=r-d , we replace r by the inverse of
r-d , that is r+d , ylelding r+d2d , or

assert r20 ,

at the end of the loop body.
We have an assignment axiom

X =g
assert x=ag ,

where the expression ¢ must remain constant during execution of the assignment; in
other words, it may not contain x . This axiom gives us the invariant
assert r=¢

prior to entering the loop. Thus, by the second rule for loops, the forward loop-body, we get
the loop invariant

L, assert r=cVr20 .

Since, by the input specification 0sc, the first disjunct implies the second, this invariant
simplifies to

L, assert r20 .

To generate invariants from a conditional test, we have a forward test rule:

assert a
if ¢ then L
PI
else L":
P”

fi

L' assert a, ¢
L"”: assert a, —¢ .

That is, for the then-branch to be taken ¢ must be true, while for the else-branch to be
taken it must be faise; furthermore, any a that held before the test, also hoids after.
Once invariants have been generated for the two branches, they are pushed forward by
the forward branch rule:

[ S———

e PR e W

- - ot o,



PROGRAM ANNOTATION 141

if ¢ then P’
assert a
else P
assert f8
fi
L:
L: assert aVf .

it states that for control to be at the point after the conditional statement, one of the two
branches must have been traversed.

The following forall rule is valuable for programs with universally-quantified output
specification. Given a loop invariant a(x) at L containing the integer variable (or
expression) x and no other variables, check if x is monotonically increasing by one. If it
is, then we have as a loop invariant at L that a still holds for all intermediate values
lying between the initial and current values. That is

assert x=a, xel
loop L: assert a(x)
4
assert x=x +l
repeat

L: assert (VteZMast<x)a(l) ,

where a is an integer expression with a constant value in P and x, is the value of x

when last at L . (This rule is similar to the universal-quantification technique for arrays in
Katz and Manna [1973).) The forall rule may be broadened to apply when x is increasing
by an amount other than 1|, or for a decreasing x .

4. Schematic Rules

in this subsection, we shall lllustrate how the control rules may be used to derive
annotation rules for program schemata.

Consider, for example, the following single-loop, single-conditional, program schema:

R SRICINPENDSY T

b




142

J 1
| P*: begin comment single-loop schema |
| z :=¢ |
| loop L¥*: assert ... |
| until #(2) |
| z = f(2) |
| if s(z) then z := g(z) else z := A(z) fi |
| repeat |
| end . |
[\ J

We shall assume that the Inverse functions f~, ¢~ , and A~ are available whenever
required by the rules.

The assignment axiom, applied to the initial assignment z:=c yields the invariant
’ assert z=¢
before the loop. The forward loop-exit rule generates the invariant —¢(z) at the head of
the loop body, immediately after the until-clause, and then the forward assignment rule

gives —t(f (z)) preceding the conditional.:

assert —t(f(z))
if s(z) then z := g(z) else z := #(z) fi .

The forward test rule propagates that invariant forward, adding s(z) at the head of the
then-clause, and —s(z) at the head of the else-clause:

if s(z)  then assert —¢(f(2)), s(2)
z = g(2)
olse assert —¢(f (1)), -u(z)
z = A(z)
fi .

g By pushing —(f"(2)) and s(z) through the them-branch assignment z:=g(z), and
'| _ - =#(f~(z)) and —s(z) through the else-branch assignment z:=A(z) , we get

; if s(z) them z := g(2)

assert —~(f"(g"(2))), s(g™(2))
else 2 = A(x)

assert —~¢(/~(A°(2))), —w(A"(2))
L ‘i .




. R
en §5 i

3?":.
l

PROGRAM ANNOTATION 143

Combining the invariants from the two different paths — using the forward branch rule — one
gets

assert [—(f (g7(2))) A s(g"(2))] V [~(f(h"(2))) A —s(h™(2))]
after the conditional, at the end of the loop body.

The forward loop-body rule expressed the fact that if control Is at the head of a loop,
either the loop-initialization invariant or the loop-body invariant must hold. Applying this
rule to our schema

assert i=¢

loop L¥*: assert
until #(z)
z = f(2)
if s(z) them z := g(z) else z := A(z) fi

assert [—(f7(g7(2)) A s(g7(z))] V [~(f(2"(2))) A ~s(a(z))]
repeat

we derive the loop invariant
L*: assert z=c V [~r(f (g (2)))Ns(g(z))] V [~(f (A" (2))A—s(A"(2))]

This loop invariant embodies two facts about the control structure of this schema:

® Whenever control is at L¥* , either the loop has just been entered, or the loop-exit
test was false the last time around the loop. That is,

L*: assert z=c V —(f"(g"(2))) V ~{f(h*(2))) .
The first disjunct is the resuit of the initialization path; the second states that the exit

test was faise for the value of z when L* was last visited, assuming control came via
the then-path of the conditional; the third disjunct says the same for the case when
control came via the else-path.

©® Whenever control is at L* , either the loop has just been entered, or the conditional
test was true the last time around and the then-path was taken, or the test was faise
and the else-path was taken. Thatis,

L*: assert r=c V s(g"(2)) V —u(r7(2)) .

As another simple example, consider the loop schema




144

2 =0

loop L:
until (z)
z = z2+]
repeat

E: .

By the label axiom

L: assert x=x, ,

we get
L: assert z=z,

Thus, we can easily derive the following invariants:

z =0
assert 2=0
loop L: assert z=z,
until (z)
z = z+]
assert z-l=7,, —(z-1)
repeat
E: assert (z) .

Now, by the forward loop-body rule we can derive the invariant

L: assert z=0V-t{z-1)
and by the forall rule , we get
L: assert (V{eZ)0sfsz)=0vV-({-1)) .

—

This simplifies to
L: assext (VPeN)($<z)—(}) ;




TR e

PROGRAM ANNOTATION 146

combined with the invariant #(z) that holds at £, it implies that the final value of z is
the minimum nonnegative integer satisfying the predicate ¢ :

E: assert z=(min {eN)X() .

5. Heuristic Rules

In contrast with the above rules that are algorithmic in the sense that they derive
relations that are guaranteed to be invariants, there is another class of rules, Aeuristic
rules, that can only suggest candidates for invariants. These candidates must be verified.

As an example, consider the following conditional heuristic

if ¢t them P’
assert a
else P
assert §
fi
L:
L. snggest a, § .

Since we know that a holds if the then-path P’ is taken, while 8 holds if the
else-path P” is taken, clearly their disjunction aV8 holds at L In either case (that was
expressed in the forward branch rule). However, since in constructing a program, a
conditional statement is often used to achieve the same relation in alternative cases (cf.
the conditional synthesis rute, page 83), it is plausible that a (or, by the same token, 8 )
may hold true for both the then- and else-paths.

As mentioned eeriier, the output specification and user-supplied assertions are the
initial set of candidates. Candidates are propagated over assignment and conditional
statements using the same control rules as for invariants. The top-down Aeuristic,

assert a

loop L:
until ¢
P
repeat

suggest 7

fact Y when a
L: suggest 7 ,




146

may be used to push a candidate (or invariant) ¥ backwards into a loop. Though (>Y
(l.e. —tv7Y ) would be a sufticlently strong loop invariant at L to establish Y upon loop
exit, the heuristic suggests a stronger candidate, Y Itself, at L . Since a necessary
condition for Y to be an invariant is that it hold upon entrance to the loop, the second

antecedent of the rule requires that the invariant a before the loop imply that 7 holds.
The idea underlying this heuristic is that an iterative loop is constructed in order to
achieve a conjunctive goal by placing one conjunct of the goal in the exit test, and
maintaining the other invariantly true (cf. the forward loop synthesis rule, page 97).

Wegbreit [1974] and Katz and Manna [1976] have suggested a more general form of
these two heuristics:

L: assert aVf
L: suggest a, § .

However, as they remark, this heuristic should not be applied indiscriminately to any
disjunctive invariant. We wouid not, for example, want to replace all occurrences of an
invariant x20 with the candidates x>0 and x=0. Special cases, such as the above
conditional and top-down heuristics are needed to indicate where the strategy is relatively
likely to be profitable.

Returning to our integer-division example

P, begin, comment integer-division program
B, assert ceN, deN+l
(g.7) = (0,0)
loop L assert
until r<d
(q.7) = (g+1,r-d)
repeat
E;: suggest ¢<c/d, c/dgq+l, gqet, r=c-g«d
end ,

e

-

the top-down heuristic suggests that of the candidates
E;: suggest g¢s<c/d, c/d<q+l, qel, r=c-q«d ,

those that hold upon entering the loop — when ¢=0 and r=c — are also candidates at L .
They are

B RO~ W 3

IR

NP LT T




PROGRAM ANNOTATION 147

L, suggest g¢sc/d, qel, r=c-gd .

The remaining candidate at £,, ¢/d<q+1 , does not necessarily hold for ¢=0.

Each candidate must be checked for invariance: it must hold for the loop-initialization
path and must be maintained true around the loop. Of the three candidates at L , the last

two, geZ and r=c-¢«d , have already been shown to be giobal invariants. To prove that
the first, g¢<c/d, is a loop invariant at L , we first try to show that it is true when the

loop is entered, i.e. that
0sc/d .

The truth of this condition follows from the input specifications. Then we try to show that
If gsc/d Is true at L, and the loop is continued, then ¢<c/d holds when control returns to

L,,le.

gscld N r2d > g+lscld .

This condition, however, is not provable. Nevertheless, we can show that g¢<c/d is an
invariant by making use of the global invariant r=¢c-g+d . Substituting c¢-g°d for r in r2d
yields c-q:d2d ; it follows that the above implication holds and ¢<c/d Is an invariant at
L,. Thus, while an attempt to directly verify the candidate ¢<c/d failed, once we have

established that r=c-¢d is an invariant, we can also show that ¢sc/d is an invariant.

Indeed, in general there may be Insufficient information to prove that a candidate is
invariant when it is first suggested, and only when other invariants are subsequently
discovered might it become possibie to verify the candidate. Therefore, candidates should
be retained until all invariants and candidates have been generated. Unproved candidates
are also used by the heuristics to generate additional candidates. For example, the
top-down heuristic uses the as yet unproved candidate Y to generate the loop candidate

Y at L.

Another heuristic, valuable for loops with universally quantified output invariants, is
the generalization heuristic rule

assert x=a
loop L: suggest a(x,y)
P

assert x=f(x,)
repeat
L: suggest (Vela,f(a),f(f(a)), . .., .x})a(f,y) .




148

Given a loop candidate a(x,y), we determine the set of values that the varisble x takes
on. Then we have as a new candidate for a loop invariant that a st.ill holds for all the
intermittent vaifles between the initial value & and the current vaiue x . For example, it
aeZ and f(x)=x+1, then we get the candidate

L: suggest (V{el)(a<fsx)x(l.9) .

This is a candidate and not an invariant since the program segment P may vary the value
of y in such a way as to destroy the relation a(x,y) for previous values of x .

Note that & candidate invariant must sometimes be replaced by a stronger candidate
in order to prove invariance. This is analogous to other forms of proof by induction, where
it is often necessary to strengthen the desired theorem to carry out a proof. The reason
is that by strengthening the theorem to be proved, we are at the same time strengthening
the hypothesis that Iis used in the inductive step. We could not, for example, directly
prove that the relation (r2d)V(r=c-¢-d) Is a loop invariant (that is the necessary condition
for r=c-¢g-d to hold after the loop), since this candidate is not preserved by the loop, i.e.

[ r2d V r=c-g.d J A r2d > [ r-d2d V r-d=c-(q+1)d ]

is not provable. On the other hand, we can prove that the stronger relation r=¢-¢-d is an
invariant, since we have a stronger hypothesis on the left-hand side of the implication;

that is,
r=c-g*d A r2d > r-d=c-(q+1)d

can be proved. Clearly, once we establish that r=c-¢ged is an invariant, it follows that
(r2d)V(r=c-q-d) aiso Is.

Various specific methods of strengthening candidates have been discussed in the
literature (Wegbreit [1974], Katz and Manna [1876], Moriconi [1974] and others): they
are closely associated with methods of "top-down® structured programming. Related
techniques are used by Greif and Waldinger [1974] and Suzuki and Ishihata [1877]. Also
the candidates that Basu and Misra [1975] and Morris and Wegbreit [1977] derive, using
the subgoal-induction method of verification, fall into this class.

6. Counters

A useful technique for proving certain properties of programs is the augmentation of a
program with counters of various sorts. For example, by initializing a counter 10 zero upon
entering a loop and incrementing it by one with each iteration, the value of the counter will
Indicate the number of times that the loop has been executed. Then, relations between




PROGRAM ANNOTATION 149

the program variables and the counter can be found. By deriving upper/iower bounds on
the counter, the termination of the loop may be proved and time complexity analyzed.

As a simple example, reconsider our (now annotated) division program

-
| assert ceN, deN+l, geN, r=c-gd in

| P, begin comment integer-division program
| (g.7) = (0,0)
| loop L assert ¢<c/d
| until r<d
| (g, 1) = (g+1,7-d)
| repeat

| E: assert rdd
| end .

—

e i C— en— — an—— e— — — —— ]

The variabie ¢ is incremented by | with each loop iteration and is initialized to 0 ; thus,
it serves as a loop counter. Since the loop invariant ¢sc/d gives an upper bound on the
value of the counter, and the counter Iis incremented with each loop iteration, the loop
must terminate. Since the output invariant r<d and global invariant r=c-¢gd yield a lower
bounds on the value of the counter, one can determine the total number of loop iterations.

Examples of the use of counters for proving termination have appeared in Katz and
Manna {Dec. 1975] and Luckham and Suzuki [1977]. Loop counters may also be used to
discover relations between variables by solving first-order difference equations. (See, for
example, Eispas [1974] and Katz and Manna [1978); Netzer [1976] applies this
technique to recursive programs). Related work, making use of a small collection ot
"loop-plans" to decompose program loops, may be found in Waters [1977]. McCarthy and
Talcott [1978] distinguish between extensional properties of programs that depend only on
the function computed by the program and intentional properties, such as space and time
requirements, that may be made explicit in derived programs containing counters.

i in the following section, we demonstrate how two nontrivial programs can be
ce . annotated using the annotation rules. These examples are taken from the program
annotation literature in order to demonstrate the power of our approach.

o P S0 S Sy

NI TRy T m—

P




T ’ L s, -
2 b 2o o'y ¥ ) .
a H . W : ) -
. ORI ..f‘ e e e nts st s o,

160

3. EXAMPLES

Our first example Is the annotation of a program intended to divide two real numbers.
The second example is a program with nested loops designed to sort an array.

Example 1: Rea! Division.

Consider the following program P, purporting to approximate the quotient c¢/d of two

’ nonnegative real numbers ¢ and d, where ¢<d. Upon termination, the variable ¢ should
be no greater than the exact quotient, and the difference between ¢ and the quotient
must be less than & given positive tolerance e¢. The program, with its specifications
included as assertions, is:

et S T N T PSS Y VA B s M S SRS T 7 e

L F P, begin comment real-division program 1‘
' | B: assert 0sc<d, 0<e |

| (g.q¢.7.77) = (0,0,1,d) |

| loop L assert |

| until r<e |

' | if qgerr<c them (g,¢q) := (ger,qqerr) fi |

| (r,rr) = (r/2,11/2) |

| repeat |

| E: suggest g¢sc/d, c/d{q+e |

1 | end . |

L ]

r. Our goal Is to find loop invariants at L, in order to verify the output candidates at £ yo In
our presentation of the annotation of this program, we first apply the assignment rules and
then the control rules combined with a heuristic rule.

1. Assignment Rules
0' As a first step, we attempt to derive simple invariants by ignoring the control
ve . structure of the program, and considering only the assignment statements. This will yleld
. globat invariants that hold throughout execution,
S We first look for range invariants by considering all assignments to each variable. For 4

example, since the assignments to r are




Eey— ——— " . ——

b N T T
%&%Q*TM#WN;,AA P - ULITE AR P e TR S Iy

: PROGRAM ANNOTATION

r = | r = r/2,

we can apply the multiplication rule

X =@¢ Xx = xe¢, X = xea,

assert xea;a,"m,"-. .. in P,

Taking | for a, and 1/2 for a, , we derive the giobal invariant
assert rel/2N in P, . (1)

In other words, r=1/2" for some nonnegative integer n . From this it is possible to derive

lower and upper bounds on r, Le. 0<srs}, since r=] when n=0, while r=)/20
approaches 0 as n grows large.

Similarly, applying the multiplication rule to the assignments to rr,
r=d o= /2,
yields
assert rred/2¥ in P, . 2)
Since we are given that d>0, it follows that 0<rrsd .
The assignments to ¢ are
g:=0 g = ger .

Since we know (1) rel/2N | these assignments may be interpreted as the nondeterministic
assignments

q €0 q € q#l/2N
Using the set-addition rule <>

X €S, x€x+sS xiexs§, ... P
assert xeS+ZS+2S+... i P,

we conclude

assert g¢eZi/2N in P, .

~-

. -~V L e - - . . -




i i o

182

This invariant states that ¢ Is a finite sum of elements of the form 1/2" , where n is
some nonnegative integer. Since for any two such elements, one is a multiple of the other,

it follows that the sum is of the form m/2" , where m,neN :
assert geN/2N in P, 3)

(l.e. ¢ Is a dyadic rational number).

From (2) rred/2M and the assignments

9 = 0 99 = qqerr
we get by the same set-addition rule

assert gqed-Zi/2¥ in P, ,

assert gqqed'N/2N in P, . (4)

The above four invariants give the range of each of the four program variables. Now
we take up relations between pairs of variables by considering their respective
assignments. Consider, first, the variables r and rr. Their assignments are

(r,rr) = (1,d) (r,rr) = (r/2,77/2) .

Each time one Is halved, so is the other; therefore, the proportion between the initial
values of r and rr s maintained throughout loop execution. This is an instance of the
multiplication-relation rule

(x,9) = (a,b) (x,9) := (xudi,youb)
(x,y) := (x-v‘-.y-v’u) ... In P
assert Dbib%i=adi9® in P,

yleiding rl-di=1lurl which simpliities to

assert rr=d«r in P, . (6)




PROGRAM ANNOTATION 163

(The rule may be matched with the assignments in the following manner: Clearly, the
assignment (x,9):=(a,,b) matches with (r,rr):=(1,d) by instantiating x, y, a,, and b,
with r, rr, 1, and d, respectively. Substituting these values in the second assignment
of the rule, we are left with (r,rr):=(ru%, rrud)) to match with (r,rr):=(r/2,77/2). To
match r-u% = r/2, divide both sides by r, leaving u% = 1/2. This in turn is effected
by Instantiating o, = 1 and u=1/2. It remains to match (1720 = /2, e,

(1122 = 172, and b, instantiates to 1.)

The assignments to ¢ and ¢¢ are
(¢.9¢9) = (0,0) (q.99) = (q+r,qq+rr) .
Using (6) rr=d-r to substitute for rr in the assignment ¢g:=gq+rr , we have
(¢.9¢) = (0,0) (9.99) := (g+r,qqeder)
which Is an instance of the addition-relation rule

(x,9) := (a,b) (x,9) := (x+a,u, y+bru)
(x,9) = (x+qev,9¢0v) ... in P

assert a c(y-b)=b(x-a) in P .
Thus we have the global invariant 1+(¢g-0)=d+(¢-0) , i.e.
assert ¢¢=dqq in P, . (6)
In all, we have established the following global invariants:

assert rel/2VN, rred/2V, qu/?“. gged" NN, rr=der, qq=d+q in P, .

2. Control Rules

So far we have derived giobal invariants from the assignment statements, ignoring the
control structure of the program. We turn now to local invariants extracted from the

program structure.

REIURPUSIRE. 5 JRECIF N

AL

i tatie

i




164

LAl

By applying the assignment axiom

X = a ;
assert x=a 4

to the multiple assignment at the beginning of the program we get the local invariant
assert ¢=0, g¢¢=0, r=), rr=d

Jjust prior to the loop. The loop axiom,

loop P’
until ¢
assert ¢
Pll
repeat
assert ¢

yields r)e at the head of the loop body and r<e at E . Thus far, we have the annotated

program segment

assert ¢=0, ¢¢=0, r=1, rr=d
loop L assert
until r<e
assert e
if gqerrsc them (g,qq) = (gér,qg+rr) fi
(r,rr) = (r/2,rr/2)
repeat
E assert r<e .

Applying the forward test rule,

assert o
if ¢t then L
Pl
else L
P"

fi

L': assert a, ¢
L"”: assert a, = ,

to the conditional statement of the loop,

if ggerrsc then (¢,9q) = (ger,qqerr) £

—




PROGRAM ANNOTATION 168

yields

if gq+rrsc then assert rde, gq+rrsc
(9.99) := (ger,qqerr)
else assert rde, clqqerr

fi .

Using a variant of the forward assignment rule,

assert a(u,jy)

X = u

L:

L: assert a(x,y) ,

where X does not appear in a(f,y), the assignment of the then-branch transform the
invariant gg+rrsc Into ggsc and leaves rde unchanged. We obtain

if qq+rrsc thenm (¢, qq) = (ger,gqerr)
assert rde, gqsc
else assert rde, c{ggerr
fi .

We may now apply the forward branch rule

if ¢t them P’
assert a
else P’
assert
fi
L:
L: assert aVf ,

to the two possible outcomes of the conditional. We obtain the invariant
assert (rdeAggsc) V (rdeNcCqqerr) ,

which simplifies to just
assert e |,

since rd>¢ appears in both disjuncts while ¢gscVcgg+rr is implied by the global invariant
(2) rr>0 ( ggscVedqq is a tautology, and if rr Is positive, then ¢<qg mplies c<gg+rr ).




= 166

By application of the forward assignment rule

assert al(x,y)
: = flx,9)

L: assert a(f (x,9).9)

to the invariant r>e¢ , we get
assert 2+rde

at the end of the loop. By applying the forward loop-body rule,

M assert o
loop L:
P
assert f
repeat

¢ - L: assert aVf ,

taking 2-r>e¢ for 8, we derive the loco invariant
L. assert (¢=qq=OAr=iArrsd) V 2:1d¢ .
in order to simplify the presentation, we shall use instead the weaker

L,: assert r=l V 2:de . (7)

8. Heuristic Rules

Recall that the control rules gave us

if ggerrsc then (g, qq) = (ger,ggerr)
assert rde, ¢gs¢
else assert rde, clgg+rr
fi ,

, but that the disjunction of ¢ggsc and c<gg+rr turned out to be a tautology. The conditional
\ heuristic

ettt MR




PROGRAM ANNOTATION 167

if ¢ then P’
assert a ‘
else | 44 4
assert 8
fi 1
L: 3
L: suggest a, B

suggests that each of the two invariants, ggsc and c¢<{gg+rr , that hold at the end of one
of the conditional paths, may be an invariant for both paths. So we have the candidate

suggest gqsc, clqq+rr

following the conditional and preceding the assignment
(r,rr) = (r/2,17/2) .

By application of the forward assignment rule

suggest V(x,y)
x = flx,y)
L:

L: suggest 7(f(x,9),9)

to the two candidates, we get
suggest qg<c, c{qq+2-rr

at the end of the ioop.
Finally, by applying the forward loop-body rule,

assert a

loop L:
P
suggest Y
repeat

L: suggest aVY ,

we get the candidates
L;: suggest (g=gq=0Ar=1Arr=d)Veqsc, (g=qq=0Ar=1Arr=d)Vc<gqg+2-rr .

Both candidates may be simplified, since their first disjunct implies their second, leaving




168

L;: suggest qqsc, c<qq+2err .

These two candidates can indeed be proved to be invariants: The first candidate, g¢sc,
derived from the initialization and then-paths, is unaffected by the else-path which leaves
the value of ¢¢ unchanged. Similarly, the other candidate, ¢<{¢q+2-rr , derived from the
initialization and else-paths, is maintained true by the then-path. So we have the loop
invariants

L.: assert ggsc, c{qq+2err . (8)

Note that we have not yet made any use of the candidates

E.: suggest ¢sc/d, cl/d{q+e ,

suggested by the output specification. For completeness, we shall apply a heuristic to
these candidates, though no new invariants will be derived. The top-down heuristic rule

assert a

loop L:
until ¢
P
repeat

suggest 7

fact Y when «
L: suggest v

suggests that the output candidate ¢<c/d may itself be a loop invariant, since it is true
upon entering the loop. Indeed it is an invariant (it is implied by the loop invariant gg<c
and the global invariant ¢g=¢g°d ). On the other hand, the second output candidate,
¢/d<q+e , does not even hold for the Initialization path, when ¢=0 .

Since there are no assignments between the loop and the end of the program, all the
loop invariants may be pushed forward unchanged, and hold upon termination. The output
invariants include

E,: assert (r=1V2erde), qqsc, clgq+?rr, rSe . (9)
These invariants, along with the global invariants

assert rr=der, gqe=d+q in P, ,

imply gsc/d as specified. However, they do not imply c/d<q+¢, only c¢/d<q+2+¢ . In fact,
our program as given is incorrect. In another chapter, we have already seen how such
invariants may be used to guide the debugging of the program.




PROGRAM ANNOTATION

4. Loop Counters

L By introducing an imaginary loop counter n — initislized to 0 upon entering the loop
and incremented by | with each iteration — one may derive relation between the program
' variables and the number of iterations.
{
The extended program, annotated with some of the invariants we have aiready found,
is:
f 1
| assert rr=der, qq=d+y, ret/oN, rreN/2N in |
. | P,: begin comment extended real-division program | g
| B,: assert 0sc<d, 0<e | i
| @er.m = (0,0,1,0) |
| n =0 . |
; | loop L : assert (r=1V2wirde), gqsc, cqgq+2err |
- . | until r<e |
4 | if gq+rrsc them (g,qq) := (g+r,qq+rr) fi |
; | (r,17) = (r/2,11/2) |
; | n o= el |
| repeat |
' | E;: assert (r=1V2.re), qqsc, c<qq+2+rr, rse |
; | end . |
‘ L J
Obviously, we may
f assert neN in P, . (10)
4 7
For the variables r and n , we have the'asslgnments
(r,n) := (1,0) (r,n) = (r/2,n+])
; and we can apply the linear rule
z {
‘; (x,9) := (a,b) (x,9) := (a,x+a,9+b) in P
, ‘ assert [x-(a,-l)+a,]bg-a|"o-[aoo(a,-l)m,]l’va,? in P .
|
1 ‘o
With this rule we get the global invariant
assert [r+(1/2-1)+0)1+(1/2)0=[1+(1/2-1)+0)1+(1/2" 1n P, ,
k s »




w Gk s Sl ST ‘:‘WT o
180
which simplifies to
| 3
.
| 3
!
r
]
- ! »
.‘\ Y »

© i P TIILINETISOL, Y W WINPT




PROGRAM ANNOTATION 161

assert r=1/2" in P, (&R ))
Applying the same rule to the assignments
(rr,n) := (d,0) (rr,n) = (rr/2,me¢l)
we deduce
assert rr=d/2" in P, . (12)
With these loop-counter invariants, the total number of loop iterations as a function of
the input values may be determined. Using (11), we can substitute 1/2" for r in the

loop invariant (7) r=1V2.rde and in the output invariant (9) r<e, and get 1/27=1Vv2/2R )
at L, and 1/2%<e at E,. Taking the logarithm ( e is positive), we have the upper bound

n=0 V n<-loge+l

and lower bound

-log,e<n

on the number of loop iterations n . Note that by finding a loop invariant giving an upper
bound on the number of iterations, we have actually proved that the loop terminates.

Combining both bounds at E, gives (assuming n=0)
-Ibge<n-loge+l ,

or, since n is an integer (10), it is equal to the one integer lying between its lower and
upper bound -|log,e]. Thus we have the output invariant

E: assert n=0 V n=-{loge| . (13)

Since n is the number of times the loop was executed before termination, we have
derived the desired expression for the time complexity of the loop.

Example 2: Selection Sort.

The previous exampie contained only one loop and dealt with simple variables. As a
more challenging example, we annotate an array-manipulation program containing nested
ioops. The program is intended to sort the array A[0:n] of ne+! elements A[0],
Al1],..., A[n] in ascending sequence. The output specification can therefore be
expressed as

Ao




162

(VEXOSE<n)ALEISALE+1]) A bag(A[O:n])=bag(A,, [0:n))

where bag(A[O:n])-bag(A,ﬁ[O:n]) means that the multiset (bag) of elements in the array
segment‘ A[0:n] is equal to the multiset of elements in the initial value of the array A,‘ v

i.e. A[0:n] is a permutation of A,’[Om]. The program is:

P,: begin comment selection-sort program

B, assert neN

[ )
l I
I I
| i =0 |
| loop L, assert |
| until #2n |
| P, begin |
| Gom, k) 1= (i), ALE),D) |
| loop L, assert |
| until >n |
| if A[j)Km then (m,k) := (A[j).j) fi |
| J =gl |
| repeat |
‘ [ (A[R), A[i1.8) := (A[i),m,i+1) |
| end |
| repeat |
| E,: suggest (V{)(0sP<n)(A[L]sA[S+1]), bag(A[O:n])=bag(A,‘[0:n]). |
| end |
L J

1. Assignment Rules

We first try to determine the range of the program variables. The variables in the
program P, are i, j, k, m,and A ; the inner loop (the program segment P, ) sets the

variables §, & and m, and leaves i and 4 unchanged.
., The assignments to i are
i =0 i := i+] ,
* . which by the addition rule gives the global invariant
assert ieN in P, . e




PROGRAM ANNOTATION 163

The assignments to f are

J = il J o= el
Since we know ieN, we may substitute N for { to obtain the nondeterministic
assignments

] e N+l ] € j+1
and by the ser-addition rule we get jeN+1+Z1 , which simplifies to
assert jeN, Isj in P, . (2)

(Recall that these global invariants only hold after f:=i+] is executed for the first time.)
Since within P, the value of { is unchanged, it may be regarded as constant. We can

therefore apply the addition rule to the assignments to j, fi=i+1 and f:=j+1 , obtaining
assert jei+l+N imn P,

and consequently

assert i¢j in P, . (3)

The assignments to & are
ko= k=4 .
Using (1) and (2) to substitute N for { and j, we have
k.e N k e N
and from the simple set-union rule

x€S x:i§ inp
assert xeS,US, in P

it follows that

assert keN in P, . €Y
in P,, as we have seen, { is constant and jei+I1+N, 80 we substitute i+1+N for j in
the assignments to & to obtain

L k e i+leN

By the same ser-union rule, We have that & belongs to the union of i and i+1+N.
Therefore Aei+N, and




164

assert isk in P, . (5)

Finally, for m we have the assignments
m = Ali] m = A[f] .
Using (1) ieN and (2) jeN to substitute N for i and j, we get
m e A[N] m € A[N) .
Thus, by the set-union rule, we obtain

assert meA[N] in P, . (6)

in the following subsections, we shall apply the control rules and heuristics first to the
inner loop and then to the outer loop.

. 2. Control Rules - Inner Loop

The inner loop of the program is

(fom, k) = (i+l, A[i). D)
loop L,: assert
until jon
if A[j)Xm then .(m, k) := (A[j).j) fi
J o= g+l
repeat .

At any point in a program, the disjunction of what Is known from the paths leading to that
point is an invariant. We shall use the controi rules to obtain loop invariants at label L.,

by considering the three paths leading to L, : the Initialization path from L, to L,, the
loop-body path from L, to L, via the then-branch of the conditional, and the ioop-body
path via the else-branch of the conditional.

From the initialization path, we have upon entering the inner loop
iKn A f=is] A m=A[l] A kei . (7)

The conjunct i<n derives from the negation of the outer-loop exit test, using the loop
axicm

J e .

W T A TG~ TV Y R YR, TR SRR U Y St ORI



PROGRAM ANNOTATION 166

loop P’
until ¢
assert —v
P"
repeat
assert ¢

By applying the assignment axiom

X = @
assert x=a

to the assighment of the initialization path
G.m, k) = (i+1, A[i),0) ,

we obtain the three invariants j=i+] , m=A[i] and k=i.

At the head of the inner-ioop body, we have the invariant

jsn A isiy N A=A A Jfy A kek A omemg

where x, , for some variable x and label L , denotes the value of x when control was

last at L . The first conjunct Is the negation of the exit test and the other conjuncts,
which are generated at L, using the label axiom,

L: assert x=x, ,

have been pushed passed the exit test unchanged. This is an application of the forward
loop-exit rule

loop P’
assert a
until ¢
L
P”
repeat
L
L': assert a,
L"”: assert a, ¢

to the inner loop., After executing the assignment in the then-branch of the conditional,
we know

»
{




jsn A meAlY A kef A isiy A A=A, A g,

The second and third conjuncts derive from the assignments (by the assignment axiom); all
the other conjuncts have been propagated forward by the forward test rule

assert a
if ¢t them L
P'
else L”:
P"

fi

L' assert a, t
L”: assert a, -

and forward assignment rule

assert alx,y)
x = f(x,9)
L:

L: assert a(f(x,9).9) .

After the (empty) else-branch of the conditional, we have
Jjsn A msA[f] A i=i,’ A A=A, A j=j,_’ A kskb’ A mem, .
‘ 1)

The second conjunct is the negation of the conditional test; It is derived from the
conditional axiom

if ¢ then assert ¢
PI
else assert -
PII
fi .

Since we must have traversed either the then- or else-branch, we know by the forward
branch rule

if ¢t them P’
assert a
else | 44
assert 8
fi
L:
L: assert aVf




WAL T LA D 0 PR Ry i

PROGRAM ANNOTATION 167

that after the conditional
( jsn A m=A4[j] A k=) A lsiL‘ A AsAL, A juj‘“ )
V (jsn A msA[j] A t==i,4s A A=AL A =, A ksh,_’ A m=m, ) .
3 ] 3

Thus, at the end of the loop body, after incrementing j by 1, we have (by the forward
assignment rule)

(j-isn A medl-1) A kej-d A dsi A A=Ay A -5, ) (8)
V (jo1sn A mSAG-1) A dsiy A A=A A Jlsfy A Reky A omemy )

Furthermore, If a relation a holds upon entering a loop, and we know that the loop
body either does not change the vaiues of the variables in a , or reachieves a for the
new values of the variables, then a Is a loop invariant. This is the protected-invariant rule

assert afx)

loop L:
P
assert al(x)Vx=x,
repeat

L: assert a(x) .

By substituting k for j-1 in the first disjunct of (8), we may derive k<n and m=A[k].
Thus, at the end of the loop body we know (ksnAm=A[k]) V (4=4 Ak=k, Am=m, ). This
invariant is of the form a(x)vx=x, , taking a(x) to be ksnAm=A[k] and x to be the

variables A, & and m . The first disjunct indicates that the then-path achieves a(x) :
the second disjunct states that the else-path leaves 4, & and m unchanged, From
invariant (7) preceding the loop, we can derive that initially ksn and m=A[Rk]. So we
have

L.: assert ks<n, m=A[k) . (9)
Similarly, by (.8) we have l-ll" for both loop-body paths, and by (7) we have i(n upon
entering the loop. Taking a(f) to be i{n, we get

L,. assert i<n . (10)

Disjoining invariant (7) of the initialization path and (8) from the loo; -body path, we
get the following inner-loop invariant (by the forward loop-body rule ):

L;: assert ( in A jsie]l A meAi] A A=t )

V ( f-1Sn A meA[f-1] A hef-1 )
V ( j-1sn A msA[J-1] ) (QR))




S

S a—-
[

168

(The con]uncts refering to the previous vaiue of a variable at L, have been removed.)

Now we extract the "common denominator® of the disjuncts in (11) arising from the
different paths. The relation j-1sn appears in the second two disjuncts and is implied by
the two conjuncts i<n and j=i+1 of the first disjunct, so we get the invariant

L, assert j-lsn . (12)

In the first disjunct of (11) we have j=i+|Am=4[i], in the second we have m=A[j-1],
while in the third we have m<A4[j-1], thus for all paths

L;: assert msA[j-1] . (13)
Alternatively, we could have used the conditional Aeuristic rule, rather than the

protected-invariant rule, to generate these assertions. The heuristic, however, would have
yleided candidates requiring further verification.




PROGRAM ANNOTATION 169

3. Generalization Heuristic - Inner Loop
The generalization heuristic rule is particularly valuable for loops involving arrays:

assert x=a

loop L: assert af(x,y)
P
assert x=xL+I
repeat

L: suggest (V{)(asisx)a(f,y) .

To apply this heuristic, reconsider the inner-loop invariant (13) a(j,m) : m<A[j-1] at L,.
Initially j is i+l , and at the end of the loop body j=jL’+l , §0, as an invariant candidate,

we try
L, suggest (V{)(i+1<tsf)(msA[$-1])

which we shall abbreviate as m<A[i;j-1]. Checking the candidate for the then- and
else-paths determines that it is in fact an invariant; thus, we have for the inner loop

L, assert m<A[iy-1] . (14)

So far we have derived the following inner-loop invariants
L, assert ksn, m=A[R]), in, j-lsn, msA[ij-1] .

We turn now to consider the ou'ter loop.

4. Control Rules - Outer Loop

Using the forward loop-exit rule , the invariants at L, may be propagated past the exit
test jO>n , obtaining

assert Asn, m=A4[R], «Kn, f-l1sn, msA[iy-1], Pon
Just prior to the assignment
(A[R), A[£),0) = (A[i], m,i+1) .

Propagating these invariants past the assignment, we get the following invariants at the
end of the outer-loop body: :

assert Asn, isn, msA[iy-1], m=A[i-1]), j-1=n . (156)




170

The invariant k<n is propagated unchanged. The invariant i<n becomes i-1<{n after
executing i:=i+l (by the forward assignment rule ), which is equivalent to isn (since both
i and n are integers). The invariant m<A[i:j-1] still holds after assigning A[i] to
A[R], since m<A[i] held before and consequently m<A[k] holds now as well; however,
after the assignment to A[i], it becomes m<A[i+1:j-1]. (To propagate invariants over an
array assignment, there is a forward array-assignment rule

assert af(A4,2)

Z[J] = f(4D).2)

L: assert a(assign(4,y,f (4[y),2)),2) ,

where the array function assign(4,y,2) yields A with z replacing A[y], and
S (f(A[y), 2),2)=A[y] . This rule states that after the assignment the invariant still holds

for alf the elements of 4, save A[y]; it also holds for old value of A[y], f(A[y).2). In
our case, the old value of A[i] cannot be reconstructed, so the index i is removed from
the range [iyj-1].) After incrementing i, msA[i+lij-1] becomes m<A[i;j-1]. The
assignment A[i]:=m generates the invariant m=A[i] (by the assignment axiom), which
becomes m=A(i-1] after incrementing i . Finally, the invariants j-1<n and j>n simplify

to j-1=n (since (2) jeN).
Clearly upon entering the outer loop (by the assignment axiom)

i=0 .
Thus, by the forward loop-body rule , we have the outer-loop invariant

L, assert i=0 V (ksnAisnAmsSA[iyf-1]Am=A[i-1]Aj-1=n)
with the following two coroliaries:

L, assert i=O0VA[i-1]<A[i:n] (16)
(the second disjunct follows from m<A[ij-1], m=A[i-1] and j-l=n ), and

L, assert isn (1?)

(since i=0 implies isn for neN). If we use the forward loop-exit rule to push isn past
the exit test i2n and out of the loop, we get the output invariant isnAi2n at E_, or,

E;: assert i(=n . (18)




PROGRAM ANNOTATION 171

5. Heuristics - Outer Loop

We use the generalization Aeuristic rule to generalize (16) for the counter i, where
ali, A) is i=OVA[i-1]sA[i:n] . Since i is initially- 0, this yields the candidate

L, suggest (VENOstsi)$=0VA[S-1]<A[Sn]) .
This is equivaient to
L,: suggest (VI)Os$<i)A[S)<A[S+1:n])

and states, in effect, that the array elements A[0:i-1] are sorted and that they are all
smalier than the array elements A[i:n]. Though the array A is modified along the
inner-loop exit path by the assignments

(A[R], ALY := (A[],m) ,

using isksn and m=A[k] (from (5) and (9)), invariance along that path can be shown.

Since isk, the assignment to A[k] cannot destroy the order of A[0:-1], and
clearly an assignment to A[i] has no etfect. Since both i and %k are in the range
[i:n] , the candidate implies that A[0:i-1]JsA[i] and A[0:i-1]s4[k]. So assigning A[i] to
A[k] does not affect the relation. Lastly, since m is equal to the previous value of
A[k], assigning that value to A[i] aiso preserves the invariant. The effect is to
exchange the vaiues of A[k] and A[i].

So we have the outer-loop invariant
L,: assert (VE)(O<{<iNA[$]<A[$+1:n])) . (19)

This may be pushed out of the loop to £,, and with (18), L.e. i=n at E_, implies the first
conjunct of the output specification,

(VEN0sE<n)(A[$]sA[S+1]) .

The top-down heuristic rule




172

assert «

loop L:
until ¢
P
repeat

suggest

fact Y when a
L: suggest v

suggests that the output specification M((A[O:n])sbag(d,_[O:n]) , which is obviously true

initially, is itself a candidate at i,. Since the assignments to A have the effect of
exchanging the values of A[k] and A[i], we have the invariant

L, assert bag(A[o:u])-bq(A,,[O:n]) . (20)

6. Loop Counters

To determine the time complexity of this program, we add three counters: one for the
outer loop (the variable i (s etfectively an outer-loop counter), one for the inner loop (call

it n,), and a third to sum the total number of inner-loop executions (call it n* ).

The extended program, annotated with some of the more important icop and output
assertions, is:




PROGRAM ANNOTATION 173

assert ieN in
P, begin comment extended selection-sort program
B,: assert neN
i =0
n* = 0
loop L, assert isn, (VENOSE<iXA[$1sA[$:n)), bag(A[0:n])=bag(A, [0:n])
until i2n
assert jf,keN in
P, begin
Gom, k) = (i+1, A[i], )
n, =0
loop L, assert in, i¢jsn+l, isk<n, m=A[k], m<A[ij-1]
until fon
if A[j}Xm them (m,k) := (4A[f).§) fi
j = gel
n, = ns#l
repeat
(A[R], ALi),0) := (A[i],m,i+])
n* = n*en
end
repeat
assexrt i=n, (V$)OSP<)(AS)SA[E+1:n])), bag(A[O:n])=bag(A,,n[0:n])

end .

E .

?*

[ e e s . s e e e e e e e e e e S . S s,
e e e e e e e - e —— — — —— — — — —— — — ]

By the addition-relation rule , we can easily determine that n, is equal to j-i-1, since
J is initialized to i+1 and is incremented by 1. We know from (16) that j=n+1 when the
inner loop is left, and it follows that the inner loop Iis executed n-i times for each
outer-loop iteration. With each outer-loop iteration, i.e. each time i is incremented by 1|,
the total number of inner-loop iterations increases by n-i . Using the following quadratic
rule

(x,9) := (a,b) (x,9) := (x+a,y+dx+b) in P

assert (y-bo)~2~a,2=(x—ao)-[b'-(x#ao—a,)*Z-a;(bgb.-ao)] in P,

and taking x to be ¢ (initially 0 and incremented by 1) and y to be the total number
of inner-loop executions (incremented by =n-{), it may be determined that




174

y+2=is[-1+(i~1)+2°n] is an invariant. (Recall the use in the previous chapter, page 122, of
the inverse of this rule.) We have already seen that upon termination i=n , i.e. the outer

loop is iterated a total of n times. Therefore, when the outer loop is left, n*=n+(n+1)/2,
i.e. the total number of inner-loop executions is n+(n+1)/2 .

In a sense, annotating programs is "putting the cart before the horse" as the whole
tenor of "structured programming” stresses developing invariants hand in hand with the
code, and not ex post facto, as annotation implies. Nevertheless, the development of
automatic annotation systems is important for a number of reasons:

® The real world contains many undocumented, underdocumented, and misdocumented
programs. Even annotated programs appearing in structured-programming textbooks have
fallen prey to error. A system that could help in documenting such programs would clearly
be of utility.

® Ultimately, it is the responsibility of the programmer to guarantee the correctness of
his product. Even if he uses one of the current automatic verification systems, he is
required to supply most, if not all, of the necessary invariant assertions. The goal of
automatic program annotation is to relieve the programmer of this burden. Agreed, no
present or foreseeable system is likely discover very subtle invariants, or those based on
deep mathematical theorems, but such invariants are likely to be uppermost in the
programmer's mind anyway. it is the “obvious" invariants that he finds annoying to have to
formulate, and indeed often forgets, causing the system to fall in its proof. For example,
the invariant k&n is crucial for the correctness of the selection sort program; if the
programmer omits it, the verification system will not be able to ‘prove correctness.
Fortunately, it is just these invariants that an automatic annotation system would find easy
to derive. Similarly, invariants needed to demonstrate the absence of runtime errors are
usually quite simple, and there has already been some success in providing current
verification systems with the capability of generating them.

® Annotation research attempts to formalize the intuitions that lie behind well-designed
programs; thus, it has important implications for automatic program synthesis. In fact, the
same rules that we used to generate invarianta from programs may be inverted to
generate programs from invariants.

® Annctation techniques may be used to discover important properties of programs other
then correctness. For example, one may wish to analyze the complexity of an algorithm or
compere the efficiency of two correct programs. This is not usually the programmer's
ooponsibiity. indeed, even simple programs are sometimes very difficult to analyze (cf.
Jungseen and Knuth [1978)).

ol

okl adl et ot o




TR Gl i BB = ‘ - (

175

REFERENCES




o

178

Balzer, R.M.,, N. Goldman, and D. Wile [Aug. 1977], Informality in program specifications,
Proc. 6th intl. Joint Conf. on Artificial intelligence, Cambridge, MA, pp. 389-397.

Basu S, and J. Misra [March 1976], Proving loop programs, IEEE Software Engineering,
vol. SE-1, no. 1, pp. 76-86.

Biermann, AW, [1976], Approaches to automatic programming, Advances in Computers,
vol. 16, Academic Press, New York, NY, pp. 1-63.

Boyer, R.S., B. Elspas, and K.N. Levitt [Apr. 1976], SELECT—a formal system for testing
and debugging programs by symbolic execution, Proc. Intl. Conf. on Reliable Software, Los
Angeles, CA, pp. 234-245.

Boyer, R.S. and J S. Moore [Jan, 1976], Proving theorems about LISP functions, JACM, vol.
22, no. 1, pp. 129-144.

Brown, R. [Oct. 1976], Reasoning by analogy, Working paper 132, Artificial Intelligence
Laboratory, MiT, Cambridge, MA. .

Buchanan, J.R, and D.C. Luckham [Mar. 1974], On automating the construction of
programs, Memo AIM-236, Artificial Intelligence Laboratory, Stanford Univ., Stanford, CA.

Burstall, R.M. and J. Darlington [Jan. 1977], A transformation system for devcloping
recursive programs, JACM, vol. 24, no. 1, pp. 44-67.

Caplain, M. [Apr. 1976), Finding invariant assertions for proving programs, Proc. Inti. Conf.
on Reliable Software, Los Angeles, CA, pp. 165-171.

Chen, T.W. and N.V. Findler [Dec. 1976}, Toward analogical reasoning in problem solving by
computers, Technical report 115, Dept. of Computer Science, State Univ. of New York,
Buffalo, NY.

Conway R. and D. Gries [1873], An introduction to programming: A structured approach,
Winthrop, Cambridge, MA.

Dahl, OJ., E.W, Dijkstra, and C.A.R. Hoare [1972], Structured programming, Academic
Press, New York, NY.

Darlington, J. [July 1976], Applications of program transformation to program synthesis,
Colloques IRIA on Proving and improving Programs, Arc-et-Senans, France, pp. 133-144.

Darlington, J. and R.M. Burstall [Mar. 1976], 4 system which automatically improves
programs, Acta Informatica, vol. 6, no. 1, pp. 41-60.

Dershowtiz, N. [1978], The evaluation of programs, Ph.D. Thesis, Applied Mathematics
Dept., Weizmann Institute, Rehovot, Israel.

Dershowitz, N. and Z. Manna [July 1878]), On automating structured programming,
Colloques [RIA on Proving and improving Programs, Arc-et-Senans, France, pp. 167-103.

Dershowitz, N. and Z. Manna [Nov. 1877], TAe evolution of programs: Automatic program
modification, IEEE Software Engineering, vol. SE-3, no. 6, np. 377-385.

AT 5o ey s T Ty TS

ST T STV T N T



REFERENCES 177

Dershowitz, N. and Z. Manna [May 1978], Inference rules for program annotation, Proc.
3rd Intl. Conf. on Software Engineering, Atlanta, GA, pp. 1568-167.

Dershowitz, N. and Z. Manna [Aug. 1979], Proving termination with multiset orderings,
CACM, vol. 22, no. 8, pp. 4656-476.

Deutsich, L.P. [May 1973], An interactive program verifier, Ph.D. thesis, Univ. of California,
Berkeley, CA; Memo CSL-73-1, Xerox Research Center, Palo Alto, CA.

Dijkstra, E.W. [1968], 4 constructive approach to the problem of program correctness, BIT, vol.
8, no. 3, pp. 174-186.

Dijkstra, EEW. [1976)], A discipline of programming, Prentice Hall, Engiewood Cliffs, NJ.

Duran, J.W. [May 1976], A study of loop invariants and automatic program synthesis, Ph.D.
thesis, Memo SESLTR-12, Software Engineering and Systems Laboratory, Univ. of
Texas, Austin, TX,

Elspas, B. [July 1974], The semiautomatic generation of inductive assertion for proving
program correctness, Interim report, Project 2686, SRI International, Menlo Park, CA.

Eve, J. [Sept. 1976], On computing the transitive closure of a relation, Memo CS~75-608,
Computer Science Dept., Stanford Univ., Stanford, CA,

Fikes R.E., P.E. Hart, and N.J. Nilsson [Winter 1972], Learning and executing generalized
robot plans, Artificial intelligence, vol. 3, no. 4, pp. 261-288.

Floyd, RW. [1987], Assigning meanings to programs, Proc. Symp. in Applied Mathematics,
vol. 19 {J.T. Schwartz, ed.), American Mathematical Society, Providence, RI, pp. 19-32.

Floyd, R.W. [Aug. 1971], Toward interactive design of correct programs, Proc. Information
Processing Cong., Ljubljana, Yugoslavia, pp. 7-10.

Gerhart, S.L. [Apr. 1976], Knowledge about programs: A model and case study, Proc. Inti.
Conf. on Reliable Software, Los Angeles, CA, pp. 88-96.

Gerhart, S.L. [July 1978], Verification operator systems and their application to logical analysis
of programs, Colloques IRIA on Proving and Improving Programs, Arc-et-Senans, France,
pp. 208-221.

Gerhart, S.L. and L. Yelowitz [Dec. 1978], Control structure abstractions of the backtracking
programming technique, IEEE Software Engineering, vol. SE-2, no. 4, pp. 285-292,

German, S.M. [May 1974], A program verifier that generates inductive assertions,
Undergraduate thesis, Memo TR-10-74, Harvard Univ., Cambridge, MA,

German, S.M. [Jan. 1978], Automating proofs of the absence of common runtime errors, Conf.
Rec. 6th ACM Symp. on Principles of Programming Languages, Tucson, AZ, pp. 105-118.

German S.M., and B. Wegbreit [Mar. 1878], A synthesizer of inductive assertions, \EEE
Software Engineering, vol. SE-1, no. 1, pp. 68-75.

Gibb, A, [July 1861), A/gorithm 61: Procedures for range arithmetic, CACM, vol. 4, no. 7, pp.
319-320.

FTPURRPRURSIP: TN JE CPT S

R o ,“-A..




178

Green, C.C. [Oct. 19786], T he design of the PSI program synthesis system, Proc. 2nd intl. Conf.
on Software Engineering, San Francisco, CA, pp. 4-18,

Greif, I. and R.J. Waldinger [Apr. 1974), 4 more mechanical heuristic approach to program
verification, Proc. Intl. Symp. on Programming, Paris, France, pp. 83-90.

Gries, D. [Nov. 1974], On structured programming - A reply to Semoliar, CACM, vol. 17, no.
11, pp. 666-657.

Harrison, W.H. [May 1977], Compiler analysis of the value ranges for variables, \EEE
Software Engineering, vol. SE-3, no. 3, pp. 243-260.

Hoare, C.A.R. [July 1961], Algorithm 63: Partition, CACM, vol. 4, no. 7, p. 321.

Hoare, C.A.R. [Oct. 1969], An axiomatic basis of computer programming, CACM, vol. 12, no.
10, pp. 576-680, 683.

Huet, G. and B. Lang [Nov. 1977], Proving and applying program transformations expressed
with second-order patterns, Report 266, IRIA Laboria, Le Chesnay, France (to appear in
Acta Informatica). i

Jonassen, A.T. and D.E. Knuth [June 1978, 4 trivial algorithm whose analysis isn't, JCSS,
VO‘. 16. no. 3. PP- 301-322-

Kant, E. [Aug. 1977], ThAe selection of efficient implementations for a high-leve! language,
Proc. Symp. on Artificial Intelligence and Programming Languages, Rochester, NY, pp.
140-146.

Katz, S.M. [Sep. 1976], Invariants and the logical analysis of programs, Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel.

Katz, S.M. and Z. Manna [Aug. 1973}, 4 heuristic approach to program verification, Adv.
Papers 3rd Intl. Conf, on Artificial Iintelligence, Stanford, CA, pp. 600-512.

Katz, S.M. and Z. Manna [Apr. 1976), Towards automatic debugging of programs, Proc. intl.
Conf. on Reliable Software, Los Angeles, CA, pp. 143-156.

Katz, S.M. and Z, Manna [Dec. 1976], 4 closer look at termination, Acta Informatica, vol. 5,
no. 4, pp. 333-362.

Katz, S,M. and Z. Manna [Apr. 1978], Logical analysis of programs, CACM, vol. 18, no. 4,
pp. 188-2086.

King, J.C. [July 1978}, Symbolic execution and program testing, CACM, vol. 19, no. 7, pp.
385-391.

Kling, R.E. [Aug. 1971], Reasoning by analogy with applications to heuristic problem solving: A
case study, Ph.D. thesis, Stanford Univ., Stanford, CA.

Knuth, D.E. (Dec. 1974], Structured programming witk go to statements, Computing Surveys,
vol. 6, no. 4, pp. 261-301.

Loveman, D.B. [Jan. 1877], Program improvement by source-to-source transformation, JACM,
vol. 24, no. 1, pp. 121-145.

Luckham, D.C. and J.R. Buchanan (July 1974], Automatic generation of programs

J




T A e

L=t 08

R MDY ra T o

L P KA T T g e AN e e e

REFERENCES 179

containing conditional statements, Proc. Conf. on Artificial intelligence and the Simulation of
Behaviour, Sussex, England, pp. 102-126.

Luckham, D.C. and N. Suzuki [Mar, 1977], Proof of termination within a weak logic of
programs, Acta Informatica, vol. 8, no. 1, pp. 21-36.

McCarthy, J. and C. Talcott [1978), LISP programming and proving, Manuscript, Artificial
Intelligence Laboratory, Stanford Univ., Stanford, CA.

Manna, Z. (June 1971], Mathematical theory of partial correctness, JCSS, vol. 6, no. 3, pp.
239-2563.

Manna, Z. and R.J. Waldinger [Summer 1976]), Knowledge and reasoning in program
synthesis, Artificlal Intelligence, vol. 6, no. 2, pp. 176-208.

Manna, Z. and R.J. Waldinger [Nov. 1977}, Synthesis: Dreams = Programs, Memo
AIM-302, Artificial Intelligence Laboratory, Stanford Univ., Stanford, CA.

Manna, Z. and RJ. Waldinger [May 1978], The logic of computer programming, |EEE
Software Engineering, vol. SE-4, no. 3, pp. 199-229.

Misra, J. [July 1976], Relations uniformly conserved by a loop, Colloques IRIA on Proving
and Improving Programs, Arc-et-Senans, France, pp. 71-80.

Misra, J. [Sept. 1978), An approach to formal definitions and proofs of programming
principles, IEEE Software Engineering, vol. SE-4, no. 5, pp. 410-413.

Moriconi, M.S. [Oct. 1874], Towards the interactive synthesis of assertions, Memo ATP-20,
Automatic Theorem Proving Project, Univ. of Texas, Austin, TX.

Morris, J.H. and B. Wegbreit [Apr, 1877], Subgoal induction, CACM, vol. 20, no. 4, pp.
209-222.

Netzer, 1. [Apr. 1978], Logical analysis of recursive programs, Master's thesis, Weizmann
Institute of Science, Rehovot, Israel.

Nelson, C.G. and D. Oppen [Apr. 1978), Simplification by cooperating decision procedures,
Memo AIM-311, Artificial intelligence Laboratory, Stanford Univ., Stanford, CA (to
appear in CACM),

Sacerdoti, E.D. [Sept. 1978], The nonlinear nature of plans, Proc. 4th Inti. Joint Conf. on
Artificial Intelligence, Tbilisi, USSR, pp. 208-214.

Sagiv, Y. [Aug. 1978), 4 study of the automatic debugging of programs, Master's thesis,
Weizmann Institute of Science, Rehovot, israel.

Scherlis, W. [May 1874), On the weak interpretation method for extracting program
. properties, Undergraduate thesis, Harvard Univ., Cambridge, MA.

Siklossy, L. [1874], ThAe synthesis of programs from their properties and the insane heuristic,
Proc. 3rd Texas Conf. on Computing Systems, Austin, TX.

Sintzoff, M. [Jan. 1972], Calculating properties of programs by valuations on specific models,
Proc. ACM Conf. on Proving Assertions About Programs, Las Cruces, NM, SIGPLAN

NO“O". vol, 7. no. " PP, 203'207.




180

REFERENCES

Standish, T.A., D.C. Harriman, D.F. Kibler, and J.M. Neighbors [Feb. 1976], Improving
and refining programs by program manipulation, Memo, Dept. of Information and Computer
Science, Univ. of California, Irvine, CA.

Sussman, G.J. [1978], 4 computer model of skill acquisition, American Eisevier, New York,
NY.

Suzuki N. and K. Ishihata [Jan. 1877), Implementation of an arrey bound checker, Conf.
Rec. 4th ACM Symp. on Principles of Programming Languages, Los Angeles, CA, pp.
132-143,

Tamir, M. [Aug. 1976], AD!/ - Automatic derivation of invariants, Master's thesis,
Weizmann Institute of Science, Rehovot, israel.

Teitelman, W. [1974], INTERLISP reference manual, Xerox Research Center, Palo Alto,
CA.

Ulrich, J.W. and R. Moll [Aug. 1977], Program synthesis by analogy, Proc. ACM Symp. on
Artificial Intelligence and Programming Languages, SIGPLAN Notices, vol. 12, no. 8,
Rochester, NY, pp. 22-28.

Waldinger, R.J. [1977], Achieving several goals simultaneously, in Machine Intelligence 8:
Machine Representations of Knowledge (E.W. Eicock and D. Michie, eds.), Ellis Horwood,
Chichester, England, pp. 94-136.

Waldinger, R.J. and K.N. Levitt [Fall 1974), Reasoning about programs, Artificial
intelligence, vol. 6, no. 3, pp. 235-316.

Warren, D.H.D. [July 1978], Generating conditional plans and programs, Proc. Conf. on
Artificial Intelligence and Simulation on Behaviour, Edinburgh, Scotland, pp. 344-354.

Waters, R.C. [July 1977), A method, based in plans, for understanding how a loop
implements a computation, Working paper 150, Artificiai Intelligence Laboratory, MIT,
Cambridge, MA.

Wegbreit, B. [Feb. 1974), The synthesis of loop predicates, CACM, vol. 17, no. 2, pp.
102-112.

Wegbreit, B. [Sept. 1975], Property extraction in well-founded property sets, IEet Software
Engineering, vol. SE-1, no. 3, pp. 270-286.

Wegbreit, B, [Jan. 1976], Goal-directed program transformation, Conf. Rec. 3rd ACM Symp.
on Principles of Programming Languages, Atianta, GA, pp. 163-170.

Wegbreit, B. and J.M. Spitzen [Apr. 1978), Proving properties of complex data structures,
JACM, vol. 23, no. 2, pp. 389-396.

Wensley, J.H. [Jan. 1969], 4 class of non-analytical iterative processes, Computer J., vol. 1,
no. 4, pp. 163-167.

Wilber, B.M, [Mar. 1978), 4 QLISP reference manual, Technical note 118, Artificial
intelligence Center, SRI International, Menlo Park, CA.




Wirth, N. [1873], Systematic programming: An introduction, Prentice-Hall, Englewood Cliffs,
NJI

Wirth, N. [Dec. 1974], On the composition of well-structured programs, Computing Surveys,
vol. 6, no. 4, pp. 247-260. .

Yelowitz, L. and A.G. Duncan [Aug. 1877), Abstractions, instantiations and proofs of
marking algorithms, Proc. Conf. on Artificlal Intelligence and Programming Languages,
SIGPLAN Notices, vol. 12, no. 8, Rochester, NY, pp. 13-21.




]

]

I
,

182

LIST OF PUBLICATIONS

(partially supported by grant AFOSR-78-3483)

Journals and Conference papers:

Dershowitz, N. and 2. Manna [Nov, 1977]), TAe evolution of programs: A system for
automatic program modification, IEEE Transactions on Software Engineering, Vol. SE-3, No.
6. Aiso presented at the ACM symposium on principles of Programming Languages, Los
Angeles, Jan. 1977,

Dershowitz, N. and Z. Manna [May 31978}, Inference rules for program annotation,
Proceedings of the Third international Conference on Software Engineering, Atianta, GA.

Dershowitsz, N. and Z. Manna [Aug. 1979], Proving termination with multiset orderings,
CACM, Vol. 22, No. 8.

Theses:

Netzer, I. [April 1976), Logical analysis of recursive programs, Master's thesis, Weizmann
Institute.

Tamir, M. [Aug. 1976}, ADI: automatic derivation of invariants, Master's thesis, Weizmann
institute. Aiso presented at the Computer Science Conference, Atlanta, GA, Jan 1977.

Sagiv, Y. [Aug. 1976], 4 study of the automatic debugging of programs, Master's thesis,
Weizmann institute.

Fried, R. [Feb. 1977), A multi-processing control structure to facilitate search methods for
QLISP goal-trees, Master's thesis, Weizmann institute.

Weingarten, Y. [May 1978], Intermittent assertion proof schemes, Master's thesis,
Weizmann Institute.

Dershowitz, N. [Nov. 1878), T e evolution of programs, Ph.D. thesis, Weizmann Institute.

Technical Reports:

Raim, M. [Oct. 1978], The QLISP/370 reference manual, Technical report, Welzmann
institute.

Raim, M. [May 1977]), 4 guide to INTERLISP/370, Technical report, Weizmann Institute.

Raim, M. [July 1877), The QLISP transplant operation, Technical report, Weizmann
institute.

B e



